Skip to main content

Advertisement

Log in

Astrocyte Diversity: Current Insights and Future Directions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes make up 20–40% of glial cells within the central nervous system (CNS) and provide several crucial functions, ranging from metabolic and structural support to regulation of synaptogenesis and synaptic transmission. Although these cells are morphologically and functionally complex, astrocytes have been historically regarded as homogenous cell populations and studied as one population of cells. Fortunately, recent evidence in RNA profiling and imaging data has begun to refute this view. These studies suggest heterogeneity of astrocytes across brain regions, differing in many aspects such as morphology, function, physiological properties, developmental origins, and response to disease. Increased understanding of astrocyte heterogeneity is critical for investigations into the function of astrocytes in the brain and neuro–glia interactions. Furthermore, insights into astrocyte heterogeneity can help better understand their role in neurological disorders and potentially produce novel approaches to treating these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  2. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389

    Article  CAS  PubMed  Google Scholar 

  3. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457(7230):675–677

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham C, Dunne A, Lopez-Rodriguez AB (2018) Astrocytes: heterogeneous and dynamic phenotypes in neurodegeneration and innate immunity. Neuroscientist 25:455–474

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guttenplan KA, Liddelow SA (2019) Astrocytes and microglia: models and tools. J Exp Med 216(1):71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allen NJ, Eroglu C (2017) Cell biology of astrocyte-synapse interactions. Neuron 96(3):697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reichert H (1990) Neurobiologie. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  10. Kimelberg HK (2009) Astrocyte heterogeneity or homogeneity. Astrocytes in (Patho)Physiology of the Nervous System. Springer, Boston

  11. Tabata H (2015) Diverse subtypes of astrocytes and their development during corticogenesis. Front Neurosci 9:114

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lundgaard I et al (2014) White matter astrocytes in health and disease. Neuroscience 276:161–173

    Article  CAS  PubMed  Google Scholar 

  13. Gallo V, Deneen B (2014) Glial development: the crossroads of regeneration and repair in the CNS. Neuron 83(2):283–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodnight RB, Gottfried C (2013) Morphological plasticity of rodent astroglia. J Neurochem 124(3):263–275

    Article  CAS  PubMed  Google Scholar 

  15. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2(3):175–186

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khakh BS, Deneen B (2019) The emerging nature of astrocyte diversity. Annu Rev Neurosci 42:187–207

    Article  CAS  PubMed  Google Scholar 

  17. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594

    Article  CAS  PubMed  Google Scholar 

  19. Chaboub LS, Deneen B (2012) Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 34(5):379–388

    Article  CAS  PubMed  Google Scholar 

  20. Ben Haim L, Rowitch DH (2017) Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18(1):31–41

    Article  PubMed  CAS  Google Scholar 

  21. Ulloa F, Briscoe J (2007) Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6(21):2640–2649

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25(2):331–343

    Article  CAS  PubMed  Google Scholar 

  23. Lu QR et al (2000) Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25(2):317–329

    Article  CAS  PubMed  Google Scholar 

  24. Lu QR et al (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109(1):75–86

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109(1):61–73

    Article  CAS  PubMed  Google Scholar 

  26. Muroyama Y et al (2005) Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438(7066):360–363

    Article  CAS  PubMed  Google Scholar 

  27. Hochstim C et al (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133(3):510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai HH et al (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller RH, Raff MC (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 4(2):585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bignami A et al (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43(2):429–435

    Article  CAS  PubMed  Google Scholar 

  31. Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130

    Article  CAS  PubMed  Google Scholar 

  32. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967

    Article  CAS  PubMed  Google Scholar 

  33. Pekny M et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345

    Article  CAS  PubMed  Google Scholar 

  34. Doyle JP et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morel L et al (2017) Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci 37(36):8706–8717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anthony TE, Heintz N (2007) The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 500(2):368–383

    Article  CAS  PubMed  Google Scholar 

  37. Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. John Lin CC et al (2017) Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci 20(3):396–405

    Article  CAS  PubMed  Google Scholar 

  39. Chai H et al (2017) Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95(3):531-549 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller SJ et al (2019) Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin. Nat Neurosci 22(5):741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Y et al (2011) Molecular comparison of GLT1 + and ALDH1L1 + astrocytes in vivo in astroglial reporter mice. Glia 59(2):200–207

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morel L et al (2019) Intracortical astrocyte subpopulations defined by astrocyte reporter Mice in the adult brain. Glia 67(1):171–181

    Article  PubMed  Google Scholar 

  43. Farmer WT, Murai K (2017) Resolving astrocyte heterogeneity in the CNS. Front Cell Neurosci 11:300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Olsen ML, Campbell SL, Sontheimer H (2007) Differential distribution of Kir4.1 in spinal cord astrocytes suggests regional differences in K + homeostasis. J Neurophysiol 98(2):786–793

    Article  CAS  PubMed  Google Scholar 

  45. Kelley KW et al (2018) Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 98(2):306–319e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Charles AC et al (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6):983–992

    Article  CAS  PubMed  Google Scholar 

  47. Cornell-Bell AH et al (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  PubMed  Google Scholar 

  48. Molofsky AV et al (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9):891–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ohno Y (2018) Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders. Neural Regen Res 13(4):651–652

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cabezas R et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson's disease. Front Cell Neurosci 8:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sofroniew MV (2014) Astrogliosis. Cold Spring Harb Perspect Biol 7(2):a020420

    Article  PubMed  CAS  Google Scholar 

  52. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434

    Article  PubMed  Google Scholar 

  54. Zamanian JL et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301

    Article  CAS  PubMed  Google Scholar 

  56. Alilain WJ et al (2011) Functional regeneration of respiratory pathways after spinal cord injury. Nature 475(7355):196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brambilla R et al (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202(1):145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bush TG et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308

    Article  CAS  PubMed  Google Scholar 

  59. Faulkner JR et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Voskuhl RR et al (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29(37):11511–11522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Clarke LE et al (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115(8):E1896-E

    Article  CAS  Google Scholar 

  63. Rothhammer V et al (2018) Microglial control of astrocytes in response to microbial metabolites. Nature 557(7707):724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yun SP et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 24(7):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dossi E, Vasile F, Rouach N (2018) Human astrocytes in the diseased brain. Brain Res Bull 136:139–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferrari R et al (2011) FTD and ALS: a tale of two diseases. Curr Alzheimer Res 8(3):273–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mena MA, Garcia de Yebenes J (2008) Glial cells as players in parkinsonism: the "good," the "bad," and the "mysterious" glia. Neuroscientist 14(6):544–560

    Article  CAS  PubMed  Google Scholar 

  68. Verkhratsky A et al (2017) Neuroglia: functional paralysis and reactivity in alzheimer's disease and other neurodegenerative pathologies. Adv Neurobiol 15:427–449

    Article  PubMed  Google Scholar 

  69. Tong J et al (2015) Low levels of astroglial markers in Parkinson's disease: relationship to alpha-synuclein accumulation. Neurobiol Dis 82:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kostuk EW, Cai J, Iacovitti L (2019) Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture. Glia 67(8):1542–1557

    PubMed  PubMed Central  Google Scholar 

  71. Booth HDE, Hirst WD, Wade-Martins R (2017) The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci 40(6):358–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chinta SJ et al (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson's disease. Cell Rep 22(4):930–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tong X et al (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat Neurosci 17(5):694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Olabarria M et al (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia 58(7):831–838

    PubMed  Google Scholar 

  75. Rodriguez-Arellano JJ et al (2016) Astrocytes in physiological aging and Alzheimer's disease. Neuroscience 323:170–182

    Article  CAS  PubMed  Google Scholar 

  76. Verkhratsky A et al (2015) Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer's disease. Neuroscientist 21(5):552–568

    Article  CAS  PubMed  Google Scholar 

  77. Shi Y et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549(7673):523–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jones VC et al (2017) Aberrant iPSC-derived human astrocytes in Alzheimer's disease. Cell Death Dis 8(3):e2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sadick JS, Liddelow SA (2019) Don't forget astrocytes when targeting Alzheimer's disease. Br J Pharmacol 176(18):3585–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haidet-Phillips AM, Maragakis NJ (2015) Neural and glial progenitor transplantation as a neuroprotective strategy for Amyotrophic Lateral Sclerosis (ALS). Brain Res 1628(Pt B):343–350

    Article  CAS  PubMed  Google Scholar 

  81. Yang Y et al (2009) Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61(6):880–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rosenblum LT, Trotti D (2017) EAAT2 and the molecular signature of amyotrophic lateral sclerosis. Adv Neurobiol 16:117–136

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kaiser M et al (2006) Progressive loss of a glial potassium channel (KCNJ10) in the spinal cord of the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 99(3):900–912

    Article  CAS  PubMed  Google Scholar 

  84. Phatnani HP et al (2013) Intricate interplay between astrocytes and motor neurons in ALS. Proc Natl Acad Sci USA 110(8):E756–E765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Rothstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Professor Michael Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westergard, T., Rothstein, J.D. Astrocyte Diversity: Current Insights and Future Directions. Neurochem Res 45, 1298–1305 (2020). https://doi.org/10.1007/s11064-020-02959-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02959-7

Keywords

Navigation