1932

Abstract

In general, foodborne diseases present themselves with gastrointestinal symptoms caused by bacterial, viral, and parasitic pathogens well established to be foodborne. These pathogens are also associated with extraintestinal clinical manifestations. Recent studies have suggested that and , which both cause common extraintestinal infections such as urinary tract and bloodstream infections, may also be foodborne. The resolution and separation of these organisms into pathotypes versus commensals by modern genotyping methods have led to the identification of key lineages of these organisms causing outbreaks of extraintestinal infections. These epidemiologic observations suggested common- or point-source exposures, such as contaminated food. Here, we describe the spectrum of extraintestinal illnesses caused by recognized enteric pathogens and then review studies that demonstrate the potential role of extraintestinal pathogenic (ExPEC) and as foodborne pathogens. The impact of global food production and distribution systems on the possible foodborne spread of these pathogens is discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032519-051618
2020-03-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/food/11/1/annurev-food-032519-051618.html?itemId=/content/journals/10.1146/annurev-food-032519-051618&mimeType=html&fmt=ahah

Literature Cited

  1. Adams-Sapper S, Diep BA, Perdreau-Remington F, Riley LW 2013. Clonal composition and community clustering of drug-susceptible and -resistant Escherichia coli isolates from bloodstream infections. Antimicrob. Agents Chemother. 57:490–97
    [Google Scholar]
  2. Adams-Sapper S, Sergeevna-Selezneva J, Tartof S, Raphael E, Diep BA et al. 2012. Globally dispersed mobile drug-resistance genes in gram-negative bacterial isolates from patients with bloodstream infections in a US urban general hospital. J. Med. Microbiol. 61:968–74
    [Google Scholar]
  3. Allos BM. 1997. Association between Campylobacter infection and Guillain-Barré syndrome. J. Infect. Dis. 176:Suppl. 2):S125–28
    [Google Scholar]
  4. Almeida F, Seribelli AA, da Silva P, Medeiros MIC, Dos Prazeres Rodrigues D et al. 2017. Multilocus sequence typing of Salmonella Typhimurium reveals the presence of the highly invasive ST313 in Brazil. Infect. Genet. Evol. 51:41–44
    [Google Scholar]
  5. Andrade LN, Curiao T, Ferreira JC, Longo JM, Climaco EC et al. 2011. Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob. Agents Chemother. 55:3579–83
    [Google Scholar]
  6. Andrade LN, Vitali L, Gaspar GG, Bellissimo-Rodrigues F, Martinez R, Darini AL 2014. Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J. Clin. Microbiol. 52:2530–35
    [Google Scholar]
  7. Arnon SS, Chin J. 1979. The clinical spectrum of infant botulism. Rev. Infect. Dis. 1:614–24
    [Google Scholar]
  8. Arnon SS, Damus K, Chin J 1981. Infant botulism: epidemiology and relation to sudden infant death syndrome. Epidemiol. Rev. 3:45–66
    [Google Scholar]
  9. Arnon SS, Midura TF, Damus K, Thompson B, Wood RM, Chin J 1979. Honey and other environmental risk factors for infant botulism. J. Pediatr. 94:331–36
    [Google Scholar]
  10. Bagley ST. 1985. Habitat association of Klebsiella species. Infect. Control 6:52–58
    [Google Scholar]
  11. Baraniak A, Izdebski R, Fiett J, Sadowy E, Adler A et al. 2013. Comparative population analysis of Klebsiella pneumoniae strains with extended-spectrum β-lactamases colonizing patients in rehabilitation centers in four countries. Antimicrob. Agents Chemother. 57:1992–97
    [Google Scholar]
  12. Belay E. 1999. Transmissible spongiform encephalopathies in humans. Annu. Rev. Microbiol. 53:283–314
    [Google Scholar]
  13. Belluco S, Simonato G, Mancin M, Pietrobelli M, Ricci A 2018. Toxoplasma gondii infection and food consumption: a systematic review and meta-analysis of case-controlled studies. Crit. Rev. Food Sci. Nutr. 58:3085–96
    [Google Scholar]
  14. Bergeron CR, Prussing C, Boerlin P, Daignault D, Dutil L et al. 2012. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg. Infect. Dis. 18:415–21
    [Google Scholar]
  15. Bert F, Johnson JR, Ouattara B, Leflon-Guibout V, Johnston B et al. 2010. Genetic diversity and virulence profiles of Escherichia coli isolates causing spontaneous bacterial peritonitis and bacteremia in patients with cirrhosis. J. Clin. Microbiol. 48:2709–14
    [Google Scholar]
  16. Blanco J, Mora A, Mamani R, Lopez C, Blanco M et al. 2011. National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. J. Antimicrob. Chemother. 66:2011–21
    [Google Scholar]
  17. Bradford PA, Bratu S, Urban C, Visalli M, Mariano N et al. 2004. Emergence of carbapenem-resistant species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis. 39:55–60
    [Google Scholar]
  18. Bratu S, Landman D, Haag R, Recco R, Eramo A et al. 2005a. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch. Intern. Med. 165:1430–35
    [Google Scholar]
  19. Bratu S, Mooty M, Nichani S, Landman D, Gullans C et al. 2005b. Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob. Agents Chemother. 49:3018–20
    [Google Scholar]
  20. Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M et al. 2005c. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J. Antimicrob. Chemother. 56:128–32
    [Google Scholar]
  21. Buchholz U, Bernard H, Werber D, Bohmer MM, Remschmidt C et al. 2011. German outbreak of Escherichia coli O104:H4 associated with sprouts. N. Engl. J. Med. 365:1763–70
    [Google Scholar]
  22. Calbo E, Freixas N, Xercavins M, Riera M, Nicolas C et al. 2011. Foodborne nosocomial outbreak of SHV1 and CTX-M-15-producing Klebsiella pneumoniae: epidemiology and control. Clin. Infect. Dis. 52:743–49
    [Google Scholar]
  23. Campos J, Mourao J, Pestana N, Peixe L, Novais C, Antunes P 2013. Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. Int. J. Food Microbiol. 166:464–70
    [Google Scholar]
  24. Cent. Dis. Control Prev 2013a. Antibiotic resistance threats in the United States, 2013 Rep., CDC Atlanta:
    [Google Scholar]
  25. Cent. Dis. Control Prev 2013b. Vital signs: carbapenem-resistant Enterobacteriaceae. Morb. Mortal. Wkly. Rep 62:165–70
    [Google Scholar]
  26. Chai JY. 2013. Paragonimiasis. Handb. Clin. Neurol. 114:283–96
    [Google Scholar]
  27. Chen L, Mathema B, Chavda KD, Deleo FR, Bonomo RA, Kreiswirth BN 2014a. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 22:686–96
    [Google Scholar]
  28. Chen L, Mathema B, Pitout JD, Deleo FR, Kreiswirth BN 2014b. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. mBio 5:e01355–14
    [Google Scholar]
  29. Chiang T, Mariano N, Urban C, Colon-Urban R, Grenner L et al. 2007. Identification of carbapenem-resistant Klebsiella pneumoniae harboring KPC enzymes in New Jersey. Microb. Drug Resist. 13:235–39
    [Google Scholar]
  30. Chin J, Arnon SS, Midura TF 1979. Food and environmental aspects of infant botulism in California. Rev. Infect. Dis. 1:693–97
    [Google Scholar]
  31. Clermont O, Bonacorsi S, Bingen E 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66:4555–58
    [Google Scholar]
  32. Cordoni G, Woodward MJ, Wu H, Alanazi M, Wallis T, La Ragione RM 2016. Comparative genomics of European avian pathogenic E. coli (APEC). BMC Genom 17:960
    [Google Scholar]
  33. Cortes P, Blanc V, Mora A, Dahbi G, Blanco JE et al. 2010. Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl. Environ. Microbiol. 76:2799–805
    [Google Scholar]
  34. Croxall G, Hale J, Weston V, Manning G, Cheetham P et al. 2011. Molecular epidemiology of extraintestinal pathogenic Escherichia coli isolates from a regional cohort of elderly patients highlights the prevalence of ST131 strains with increased antimicrobial resistance in both community and hospital care settings. J. Antimicrob. Chemother. 66:2501–8
    [Google Scholar]
  35. Crump JA, Heyderman RS. 2015. A perspective on invasive Salmonella disease in Africa. Clin. Infect. Dis. 61:Suppl. 4S235–40
    [Google Scholar]
  36. Davis GS, Price LB. 2016. Recent research examining links among Klebsiella pneumoniae from food, food animals, and human extraintestinal infections. Curr. Environ. Health Rep. 3:128–35
    [Google Scholar]
  37. Davis GS, Waits K, Nordstrom L, Weaver B, Aziz M et al. 2015. Intermingled Klebsiella pneumoniae populations between retail meats and human urinary tract infections. Clin. Infect. Dis. 61:892–99
    [Google Scholar]
  38. Dezfulian H, Batisson I, Fairbrother JM, Lau PC, Nassar A et al. 2003. Presence and characterization of extraintestinal pathogenic Escherichia coli virulence genes in F165-positive E. coli strains isolated from diseased calves and pigs. J. Clin. Microbiol. 41:1375–85
    [Google Scholar]
  39. Dho-Moulin M, Fairbrother JM. 1999. Avian pathogenic Escherichia coli (APEC). Vet. Res. 30:299–316
    [Google Scholar]
  40. Dias RC, Marangoni DV, Smith SP, Alves EM, Pellegrino FL et al. 2009. Clonal composition of Escherichia coli causing community-acquired urinary tract infections in the State of Rio de Janeiro, Brazil. Microb. Drug Resist. 15:303–8
    [Google Scholar]
  41. Dorny P, Praet N, Deckers N, Gabriel S 2009. Emerging food-borne parasites. Vet. Parasitol. 163:196–206
    [Google Scholar]
  42. Dupouy-Camet J, Peduzzi R. 2004. Current situation of human diphyllobothriasis in Europe. Eurosurveillance 9:31–35
    [Google Scholar]
  43. Endimiani A, Depasquale JM, Forero S, Perez F, Hujer AM et al. 2009a. Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J. Antimicrob. Chemother. 64:1102–10
    [Google Scholar]
  44. Endimiani A, Hujer AM, Perez F, Bethel CR, Hujer KM et al. 2009b. Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the eastern USA. J. Antimicrob. Chemother. 63:427–37
    [Google Scholar]
  45. FAO/WHO 2014. Multicriteria‐based ranking for risk management of food‐borne parasites. In Microbiological Risk Assessment Series, Vol. 23 FAO/WHO Rome: FAO/WHO
    [Google Scholar]
  46. Fialho OB, de Souza EM, de Borba Dallagassa C, de Oliveira Pedrosa F, Klassen G et al. 2013. Detection of diarrheagenic Escherichia coli using a two-system multiplex-PCR protocol. J. Clin. Lab. Anal. 27:155–61
    [Google Scholar]
  47. Frank C, Werber D, Cramer JP, Askar M, Faber M et al. 2011. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Engl. J. Med. 365:1771–80
    [Google Scholar]
  48. Gibreel TM, Dodgson AR, Cheesbrough J, Fox AJ, Bolton FJ, Upton M 2012. Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J. Antimicrob. Chemother. 67:346–56
    [Google Scholar]
  49. Gordon MA. 2011. Invasive nontyphoidal Salmonella disease: epidemiology, pathogenesis and diagnosis. Curr. Opin. Infect. Dis. 24:484–89
    [Google Scholar]
  50. Graham SM, English M. 2009. Non-typhoidal salmonellae: a management challenge for children with community-acquired invasive disease in tropical African countries. Lancet 373:267–69
    [Google Scholar]
  51. Groisman EA, Ochman H. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–94
    [Google Scholar]
  52. Gunzburg ST, Tornieporth NG, Riley LW 1995. Identification of enteropathogenic Escherichia coli by PCR-based detection of the bundle-forming pilus gene. J. Clin. Microbiol. 33:1375–77
    [Google Scholar]
  53. Gupta N, Limbago BM, Patel JB, Kallen AJ 2011. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin. Infect. Dis. 53:60–67
    [Google Scholar]
  54. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:1089–97
    [Google Scholar]
  55. Haselbeck AH, Panzner U, Im J, Baker S, Meyer CG, Marks F 2017. Current perspectives on invasive nontyphoidal Salmonella disease. Curr. Opin. Infect. Dis. 30:498–503
    [Google Scholar]
  56. Hawkey PM, Livermore DM. 2012. Carbapenem antibiotics for serious infections. BMJ 344:e3236
    [Google Scholar]
  57. Hill Gaston JS, Lillicrap MS 2003. Arthritis associated with enteric infection. Best Pract. Res. Clin. Rheumatol. 17:219–39
    [Google Scholar]
  58. Hong SK, Yong D, Kim K, Hong SS, Hong SG et al. 2013. First outbreak of KPC-2-producing Klebsiella pneumoniae sequence type 258 in a hospital in South Korea. J. Clin. Microbiol. 51:3877–79
    [Google Scholar]
  59. Horner C, Fawley W, Morris K, Parnell P, Denton M, Wilcox M 2014. Escherichia coli bacteraemia: 2 years of prospective regional surveillance (2010–12). J. Antimicrob. Chemother. 69:91–100
    [Google Scholar]
  60. Hrabak J, Papagiannitsis CC, Studentova V, Jakubu V, Fridrichova M, Zemlickova H 2013. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Eurosurveillance 18:20626
    [Google Scholar]
  61. Hussain A, Shaik S, Ranjan A, Nandanwar N, Tiwari SK et al. 2017. Risk of transmission of antimicrobial resistant Escherichia coli from commercial broiler and free-range retail chicken in India. Front. Microbiol. 8:2120
    [Google Scholar]
  62. Inst. Pasteur 2019. Klebsiella sequence typing Institute Pasteur MLST and Whole Genome MLST Databases https://bigsdb.pasteur.fr/klebsiella/klebsiella.html
    [Google Scholar]
  63. Jain R, Walk ST, Aronoff DM, Young VB, Newton DW et al. 2013. Emergence of Carbapenemase-producing Klebsiella pneumoniae of sequence type 258 in Michigan, USA. Infect. Dis. Rep. 5:e5
    [Google Scholar]
  64. Jain S, Chen L, Dechet A, Hertz AT, Brus DL et al. 2008. An outbreak of enterotoxigenic Escherichia coli associated with sushi restaurants in Nevada, 2004. Clin. Infect. Dis. 47:1–7
    [Google Scholar]
  65. Jakobsen L, Garneau P, Bruant G, Harel J, Olsen SS et al. 2012. Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. Eur. J. Clin. Microbiol. Infect. Dis. 31:1121–29
    [Google Scholar]
  66. Jakobsen L, Garneau P, Kurbasic A, Bruant G, Stegger M et al. 2011. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. J. Med. Microbiol. 60:1502–11
    [Google Scholar]
  67. Jakobsen L, Hammerum AM, Frimodt-Moller N 2010. Detection of clonal group A Escherichia coli isolates from broiler chickens, broiler chicken meat, community-dwelling humans, and urinary tract infection (UTI) patients and their virulence in a mouse UTI model. Appl. Environ. Microbiol. 76:8281–84
    [Google Scholar]
  68. Johnson JR. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4:80–128
    [Google Scholar]
  69. Johnson JR, Delavari P, Kuskowski M, Stell AL 2001. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J. Infect. Dis 183:78–88
    [Google Scholar]
  70. Johnson JR, Delavari P, O'Bryan TT, Smith KE, Tatini S 2005a. Contamination of retail foods, particularly turkey, from community markets (Minnesota, 1999–2000) with antimicrobial-resistant and extraintestinal pathogenic Escherichia coli. Foodborne Pathog. Dis 2:38–49
    [Google Scholar]
  71. Johnson JR, Kuskowski MA, O'Bryan T, Colodner R, Raz R 2005b. Virulence genotype and phylogenetic origin in relation to antibiotic resistance profile among Escherichia coli urine sample isolates from Israeli women with acute uncomplicated cystitis. Antimicrob. Agents Chemother. 49:26–31
    [Google Scholar]
  72. Johnson JR, Kuskowski MA, Smith K, O'Bryan TT, Tatini S 2005c. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J. Infect. Dis. 191:1040–49
    [Google Scholar]
  73. Johnson JR, Menard ME, Lauderdale TL, Kosmidis C, Gordon D et al. 2011. Global distribution and epidemiologic associations of Escherichia coli clonal group A, 1998–2007. Emerg. Infect. Dis. 17:2001–9
    [Google Scholar]
  74. Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P et al. 2003. Isolation and molecular characterization of nalidixic acid–resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob. Agents Chemother. 47:2161–68
    [Google Scholar]
  75. Johnson JR, Porter SB, Johnston B, Thuras P, Clock S et al. 2017. Extraintestinal pathogenic and antimicrobial-resistant Escherichia coli, including sequence type 131 (ST131), from retail chicken breasts in the United States in 2013. Appl. Environ. Microbiol. 83:6e02959–16
    [Google Scholar]
  76. Johnson JR, Russo TA. 2005. Molecular epidemiology of extraintestinal pathogenic (uropathogenic. Escherichia coli. Int. J. Med. Microbiol. 295:383–404
    [Google Scholar]
  77. Johnson JR, Russo TA. 2018. Molecular epidemiology of extraintestinal pathogenic Escherichia coli. . EcoSal Plus 8:1ESP–0004-2017
    [Google Scholar]
  78. Johnson JR, Stell AL. 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181:261–72
    [Google Scholar]
  79. Johnson JR, Stell AL, O'Bryan TT, Kuskowski M, Nowicki B et al. 2002. Global molecular epidemiology of the O15:K52:H1 extraintestinal pathogenic Escherichia coli clonal group: evidence of distribution beyond Europe. J. Clin. Microbiol. 40:1913–23
    [Google Scholar]
  80. Johnson TJ, Wannemuehler Y, Johnson SJ, Stell AL, Doetkott C et al. 2008. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl. Environ. Microbiol. 74:7043–50
    [Google Scholar]
  81. Jones GL, Warren RE, Skidmore SJ, Davies VA, Gibreel T, Upton M 2008. Prevalence and distribution of plasmid-mediated quinolone resistance genes in clinical isolates of Escherichia coli lacking extended-spectrum β-lactamases. J. Antimicrob. Chemother. 62:1245–51
    [Google Scholar]
  82. Jorgensen SL, Stegger M, Kudirkiene E, Lilje B, Poulsen LL et al. 2019. Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. mSphere 4:1e00333–18
    [Google Scholar]
  83. Kaper JB, Nataro JP, Mobley HL 2004. Pathogenic Escherichia coli. Nat. Rev. . Microbiol 2:123–40
    [Google Scholar]
  84. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE et al. 2009. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19:2279–87
    [Google Scholar]
  85. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S et al. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob. Agents Chemother. 53:3365–70
    [Google Scholar]
  86. Kluytmans JA, Overdevest IT, Willemsen I, Kluytmans-van den Bergh MF, van der Zwaluw K et al. 2013. Extended-spectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 56:478–87
    [Google Scholar]
  87. Kobayashi RK, Aquino I, Ferreira AL, Vidotto MC 2011. EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil. Foodborne Pathog. Dis. 8:631–34
    [Google Scholar]
  88. Kohler CD, Dobrindt U. 2011. What defines extraintestinal pathogenic Escherichia coli. ? Int. J. Med. Microbiol. 301:642–47
    [Google Scholar]
  89. Lau SH, Reddy S, Cheesbrough J, Bolton FJ, Willshaw G et al. 2008. Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. J. Clin. Microbiol. 46:1076–80
    [Google Scholar]
  90. Lee MY, Choi HJ, Choi JY, Song M, Song Y et al. 2010. Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J. Infect. 60:146–53
    [Google Scholar]
  91. Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP et al. 2011. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 17:873–80
    [Google Scholar]
  92. Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K et al. 2018. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 9:e00470–18
    [Google Scholar]
  93. Lomaestro BM, Tobin EH, Shang W, Gootz T 2006. The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York. Clin. Infect. Dis. 43:e26–28
    [Google Scholar]
  94. Ma L, Siu LK, Lin JC, Wu TL, Fung CP et al. 2013. Updated molecular epidemiology of carbapenem-non-susceptible Escherichia coli in Taiwan: first identification of KPC-2 or NDM-1-producing E. coli in Taiwan. BMC Infect. Dis. 13:599
    [Google Scholar]
  95. MacDonald E, Moller KE, Wester AL, Dahle UR, Hermansen NO et al. 2015. An outbreak of enterotoxigenic Escherichia coli (ETEC) infection in Norway, 2012: a reminder to consider uncommon pathogens in outbreaks involving imported products. Epidemiol. Infect. 143:486–93
    [Google Scholar]
  96. Manges AR. 2016. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin. Microbiol. Infect. 22:122–29
    [Google Scholar]
  97. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD 2019. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 32:3e00135–18
    [Google Scholar]
  98. Manges AR, Johnson JR. 2012. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Infect. Dis. 55:712–19
    [Google Scholar]
  99. Manges AR, Johnson JR, Foxman B, O'Bryan TT, Fullerton KE, Riley LW 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 345:1007–13
    [Google Scholar]
  100. Manges AR, Tabor H, Tellis P, Vincent C, Tellier PP 2008. Endemic and epidemic lineages of Escherichia coli that cause urinary tract infections. Emerg. Infect. Dis. 14:1575–83
    [Google Scholar]
  101. Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y 2008. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob. Agents Chemother. 52:1413–18
    [Google Scholar]
  102. Marier R, Wells JG, Swanson RC, Callahan W, Mehlman IJ 1973. An outbreak of enteropathogenic Escherichia coli foodborne disease traced to imported French cheese. Lancet 302:1376–78
    [Google Scholar]
  103. Martins IS, Pessoa-Silva CL, Nouer SA, Pessoa DE, Araujo EG et al. 2006. Endemic extended-spectrum β-lactamase-producing Klebsiella pneumoniae at an intensive care unit: risk factors for colonization and infection. Microb. Drug Resist. 12:50–58
    [Google Scholar]
  104. Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R et al. 2004. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J. Clin. Microbiol. 42:5444–52
    [Google Scholar]
  105. Mellata M, Johnson JR, Curtiss R 3rd 2018. Escherichia coli isolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections. Zoonoses Public Health 65:103–13
    [Google Scholar]
  106. Mitchell NM, Johnson JR, Johnston B, Curtiss R 3rd, Mellata M 2015. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Appl. Environ. Microbiol. 81:1177–87
    [Google Scholar]
  107. Moazeni M, Khamesipour F, Anyona DN, Dida GO 2019. Epidemiology of taeniosis, cysticercosis and trichinellosis in Iran: a systematic review. Zoonoses Public Health 66:140–154
    [Google Scholar]
  108. Moorhead A, Grunenwald PE, Dietz VJ, Schantz PM 1999. Trichinellosis in the United States, 1991–1996: declining but not gone. Am. J. Trop. Med. Hyg. 60:66–69
    [Google Scholar]
  109. Mora A, Viso S, Lopez C, Alonso MP, Garcia-Garrote F et al. 2013. Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans. Vet. Microbiol. 167:506–12
    [Google Scholar]
  110. Moulin-Schouleur M, Reperant M, Laurent S, Bree A, Mignon-Grasteau S et al. 2007. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J. Clin. Microbiol. 45:3366–76
    [Google Scholar]
  111. Munkhdelger Y, Gunregjav N, Dorjpurev A, Juniichiro N, Sarantuya J 2017. Detection of virulence genes, phylogenetic group and antibiotic resistance of uropathogenic Escherichia coli in Mongolia. J. Infect. Dev. Ctries. 11:51–57
    [Google Scholar]
  112. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13:785–96
    [Google Scholar]
  113. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev 11:142–201
    [Google Scholar]
  114. Natl. Chick. Counc 2018. Statistics. National Chicken Council https://www.nationalchickencouncil.org/about-the-industry/statistics/#
    [Google Scholar]
  115. Newitt S, Macgregor V, Robbins V, Bayliss L, Chattaway MA et al. 2016. Two linked enteroinvasive Escherichia coli outbreaks, Nottingham, UK, June 2014. Emerg. Infect. Dis. 22:1178–84
    [Google Scholar]
  116. Nordmann P, Cuzon G, Naas T 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 9:228–36
    [Google Scholar]
  117. Nuesch-Inderbinen MT, Baschera M, Zurfluh K, Hachler H, Nuesch H, Stephan R 2017. Clonal diversity, virulence potential and antimicrobial resistance of Escherichia coli causing community acquired urinary tract infection in Switzerland. Front. Microbiol. 8:2334
    [Google Scholar]
  118. Ochman H, Selander RK. 1984. Standard reference strains of Escherichia coli from natural populations. J. Bacteriol. 157:690–93
    [Google Scholar]
  119. Olesen B, Kolmos HJ, Orskov F, Orskov I 1995. A comparative study of nosocomial and community-acquired strains of Escherichia coli causing bacteraemia in a Danish University hospital. J. Hosp. Infect. 31:295–304
    [Google Scholar]
  120. Olesen B, Scheutz F, Menard M, Skov MN, Kolmos HJ et al. 2009. Three-decade epidemiological analysis of Escherichia coli O15:K52:H1. J. Clin. Microbiol. 47:1857–62
    [Google Scholar]
  121. Olsvik O, Wasteson Y, Lund A, Hornes E 1991. Pathogenic Escherichia coli found in food. Int. J. Food Microbiol. 12:103–13
    [Google Scholar]
  122. Paczosa MK, Mecsas J. 2016. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 80:629–61
    [Google Scholar]
  123. Pereira KS, Schmidt FL, Guaraldo AM, Franco RM, Dias VL, Passos LA 2009. Chagas’ disease as a foodborne illness. J. Food Prot. 72:441–46
    [Google Scholar]
  124. Phillips I, Eykyn S, King A, Gransden WR, Rowe B et al. 1988. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1:1038–41
    [Google Scholar]
  125. Pope JE, Krizova A, Garg AX, Thiessen-Philbrook H, Ouimet JM 2007. Campylobacter reactive arthritis: a systematic review. Semin. Arthritis Rheum. 37:48–55
    [Google Scholar]
  126. Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y 2011. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother. 66:307–12
    [Google Scholar]
  127. Ramchandani M, Manges AR, Debroy C, Smith SP, Johnson JR, Riley LW 2005. Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin. Infect. Dis 40:251–57
    [Google Scholar]
  128. Rhodes KM, Tattersfield AE. 1982. Guillain-Barré syndrome associated with Campylobacter infection. Br. Med. J. (Clin. Res. Ed.) 285:173–74
    [Google Scholar]
  129. Riley LW. 2014. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect 20:380–90
    [Google Scholar]
  130. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG et al. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308:681–85
    [Google Scholar]
  131. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK 2005a. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 151:2097–110
    [Google Scholar]
  132. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Nolan LK 2005b. Characterizing the APEC pathotype. Vet. Res. 36:241–56
    [Google Scholar]
  133. Ronco T, Stegger M, Olsen RH, Sekse C, Nordstoga AB et al. 2017. Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production. BMC Genom 18:13
    [Google Scholar]
  134. Russo TA, Johnson JR. 2000. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J. Infect. Dis. 181:1753–54
    [Google Scholar]
  135. Sabota JM, Hoppes WL, Ziegler JR, Dupont H, Mathewson J, Rutecki GW 1998. A new variant of food poisoning: enteroinvasive Klebsiella pneumoniae and Escherichia coli sepsis from a contaminated hamburger. Am. J. Gastroenterol. 93:118–19
    [Google Scholar]
  136. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B et al. 2015. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 25:119–28
    [Google Scholar]
  137. Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M et al. 2019. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog 11:10
    [Google Scholar]
  138. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM 2011a. Foodborne illness acquired in the United States: unspecified agents. Emerg. Infect. Dis. 17:16–22
    [Google Scholar]
  139. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA et al. 2011b. Foodborne illness acquired in the United States: major pathogens. Emerg. Infect. Dis. 17:7–15
    [Google Scholar]
  140. Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G et al. 2011. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin. Infect. Dis. 52:848–55
    [Google Scholar]
  141. Serrano-Moliner M, Morales-Suarez-Varela M, Valero MA 2018. Epidemiology and management of foodborne nematodiasis in the European Union, systematic review 2000–2016. Pathog. Glob. Health 112:249–58
    [Google Scholar]
  142. Shikanai-Yasuda MA, Carvalho NB. 2012. Oral transmission of Chagas’ disease. Clin. Infect. Dis. 54:845–52
    [Google Scholar]
  143. Shin J, Yoon KB, Jeon DY, Oh SS, Oh KH et al. 2016. Consecutive outbreaks of enterotoxigenic Escherichia coli O6 in schools in South Korea caused by contamination of fermented vegetable kimchi. Foodborne Pathog. Dis. 13:535–43
    [Google Scholar]
  144. Sola-Gines M, Cameron-Veas K, Badiola I, Dolz R, Majo N et al. 2015. Diversity of multi-drug resistant avian pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain. PLOS ONE 10:e0143191
    [Google Scholar]
  145. Stephen JM, Toleman MA, Walsh TR, Jones RN 2003. Salmonella bloodstream infections: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). Int. J. Antimicrob. Agents 22:395–405
    [Google Scholar]
  146. Tacket CO, Barrett TJ, Mann JM, Roberts MA, Blake PA 1984a. Wound infections caused by Vibrio vulnificus, a marine vibrio, in inland areas of the United States. J. Clin. Microbiol. 19:197–99
    [Google Scholar]
  147. Tacket CO, Brenner F, Blake PA 1984b. Clinical features and an epidemiological study of Vibrio vulnificus infections. J. Infect. Dis. 149:558–61
    [Google Scholar]
  148. Tartof SY, Solberg OD, Manges AR, Riley LW 2005. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J. Clin. Microbiol. 43:5860–64
    [Google Scholar]
  149. Temkin E, Adler A, Lerner A, Carmeli Y 2014. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann. N. Y. Acad. Sci. 1323:22–42
    [Google Scholar]
  150. Tornieporth NG, John J, Salgado K, de Jesus P, Latham E et al. 1995. Differentiation of pathogenic Escherichia coli strains in Brazilian children by PCR. J. Clin. Microbiol. 33:1371–74
    [Google Scholar]
  151. Uche IV, MacLennan CA, Saul A 2017. A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLOS Negl. Trop. Dis. 11:e0005118
    [Google Scholar]
  152. van Ijperen C, Kuhnert P, Frey J, Clewley JP 2002. Virulence typing of Escherichia coli using microarrays. Mol. Cell Probes 16:371–78
    [Google Scholar]
  153. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L et al. 2010. Food reservoir for Escherichia coli causing urinary tract infections. Emerg. Infect. Dis. 16:88–95
    [Google Scholar]
  154. Waghorn DJ, Kelly TW, Gibbins W 1988. Epidemic multi-resistant Escherichia coli infection in south London. J. Hosp. Infect. 11:192–93
    [Google Scholar]
  155. Woodford N, Tierno PM Jr., Young K, Tysall L, Palepou MF et al. 2004. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother. 48:4793–99
    [Google Scholar]
  156. Wright ED, Perinpanayagam RM. 1987. Multiresistant invasive Escherichia coli infection in south London. Lancet 1:556–57
    [Google Scholar]
  157. Yamaji R, Friedman CR, Rubin J, Suh J, Thys E et al. 2018a. A population-based surveillance study of shared genotypes of Escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere 3:4e00179–18
    [Google Scholar]
  158. Yamaji R, Rubin J, Thys E, Friedman CR, Riley LW 2018b. Persistent pandemic lineages of uropathogenic Escherichia coli in a college community from 1999 to 2017. J. Clin. Microbiol. 56:4e01834–17
    [Google Scholar]
  159. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. 2001. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. . Agents Chemother 45:1151–61
    [Google Scholar]
  160. Zhou X, Xia W, Tu J, Xue L, Ni X 2015. Molecular characterisation of enteroinvasive Escherichia coli O136:K78 isolates from patients of a diarrhoea outbreak in China. Indian J. Med. Microbiol. 33:528–32
    [Google Scholar]
/content/journals/10.1146/annurev-food-032519-051618
Loading
/content/journals/10.1146/annurev-food-032519-051618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error