Skip to main content
Log in

Small Molecules with Big Impacts on Cardiovascular Diseases

  • Review
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Although in recent years there has been a significant progress in the diagnosis, treatment, and prognosis of CVD, but due to their complex pathobiology, developing novel biomarkers and therapeutic interventions are still in need. MicroRNAs (miRNAs) are a fraction of non-coding RNAs that act as micro-regulators of gene expression. Mounting evidences over the last decade confirmed that microRNAs were deregulated in several CVDs and manipulating their expression could affect homeostasis, differentiation, and function of cardiovascular system. Here, we review the current knowledge concerning the roles of miRNAs in cardiovascular diseases with more details on cardiac remodeling, arrhythmias, and atherosclerosis. In addition, we discuss the latest findings on the potential therapeutic applications of miRNAs in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette subfamily A member 1

ABCG1:

ATP-Binding Cassette Subfamily G Member 1

APOA1:

Apolipoprotein A1

APOE:

Apolipoprotein E

BCL-2:

Targeting B-cell lymphoma 2

CACNA1C:

Calcium voltage-gated channel subunit alpha1 C

CACNB1:

Calcium Voltage-Gated Channel Auxiliary Subunit Beta 1

CVDs:

Cardiovascular diseases

ERK/MAP:

Extracellular signal-regulated kinase/mitogen-activated protein

EZH2:

Enhancer of zeste homolog 2

GJA1:

Gap junction protein alpha 1

HDAC4:

Histone deacetylase 4

HDL-C:

High-density lipoprotein cholesterol

HIF-1:

Hypoxia-inducible factor 1

IK1:

Inward rectifier current

KCNJ2:

Potassium Inwardly Rectifying Channel Subfamily J Member 2

KCNN3:

Potassium calcium-activated channel subfamily N member 3

KIR2.1:

K+ channel subunit inward-rectifier potassium channel

LDL-C:

Low-density lipoprotein cholesterol C

LDLR:

Low-density lipoprotein receptor

LNA:

Locked nucleic acid

miRNAs:

MicroRNAs:

ncRNAs:

Non-coding RNAs

NPC1:

Niemann-Pick C1

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PDCD4:

Programmed cell death 4

PTEN:

Phosphatase and tensin homolog protein

RCT:

Reverse cholesterol transport

RISC:

RNA-induced silencing complex

SIRT1:

Silent mating type information regulation 2 homolog 1

SREBP-1:

Sterol regulatory element-binding protein 2 and 1 genes

SREBP-2:

Sterol regulatory element-binding protein 2 and 1 genes

TGFβ:

Transforming growth factor beta

THRAP1:

Thyroid hormone receptor-associated protein 1

VSMC:

Vascular smooth muscle cell

β-MHC:

β-Myosin heavy chain

References

  • Adameova A, Goncalvesova E, Szobi A, Dhalla NS (2016) Necroptotic cell death in failing heart: relevance and proposed mechanisms. Heart Fail Rev 21(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Alcendor RR, Kirshenbaum LA, Imai S-I, Vatner SF, Sadoshima J (2004) Silent information regulator 2α, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 95(10):971–980

    Article  CAS  PubMed  Google Scholar 

  • Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19(7–8):454–492

    Article  CAS  PubMed  Google Scholar 

  • Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca 2+ overload and cell death. J Clin Invest 122(4):1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA (2015) Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol (AHEAD) 106(1):62–69

    Google Scholar 

  • Bartel DP, Chen C-Z (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396

    Article  CAS  PubMed  Google Scholar 

  • Belevych AE, Sansom SE, Terentyeva R, Ho H-T, Nishijima Y, Martin MM, Jindal HK, Rochira JA, Kunitomo Y, Abdellatif M (2011) MicroRNA-1 and-133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS ONE 6(12):e28324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardo BC, Gao X-M, Winbanks CE, Boey EJ, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du X-J (2012) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA 109(43):17615–17620

    Article  CAS  PubMed  Google Scholar 

  • Białek S, Górko D, Zajkowska A, Kołtowski Ł, Grabowski M, Stachurska A, Kochman J, Sygitowicz G, Małecki M, Opolski G (2015) Release kinetics of circulating miRNA-208a in the early phase of myocardial infarction. Kardiol Pol (Pol Heart J) 73(8):613–619

    Article  Google Scholar 

  • Bonasio R, Shiekhattar R (2014) Regulation of transcription by long noncoding RNAs. Annu Rev Genet 48:433–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110

    Article  CAS  PubMed  Google Scholar 

  • Boštjančič E, Zidar N, Glavač D (2009) MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers 27(6):255–268

    Article  PubMed  Google Scholar 

  • Burenina O, Oretskaya T, Kubareva E (2017) Non-coding RNAs as transcriptional regulators in eukaryotes. Acta Nat 9(4):13–25

    Article  CAS  Google Scholar 

  • Callis TE, Pandya K, Seok HY, Tang R-H, Tatsuguchi M, Huang Z-P, Chen J-F, Deng Z, Gunn B, Shumate J (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119(9):2772–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618

    Article  CAS  PubMed  Google Scholar 

  • Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, Bassel-Duby R, Olson EN (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci USA 109(38):15330–15335

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charytan DM, Stern NM, Mauri L (2012) CKD and coronary collateral supply in individuals undergoing coronary angiography after myocardial infarction. Clin J Am Soc Nephrol 7(7):1079–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Gao D-Y, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Lu S, Xu M, Liu P, Ren R, Ma W (2017) Role of miR-24, furin, and transforming growth factor-β1 signal pathway in fibrosis after cardiac infarction. Med Sci Monit 23:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170(6):1831–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J, Zhang C (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87(3):431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35(3):569–582

    Article  CAS  PubMed  Google Scholar 

  • Consortium, E. P (2004) The ENCODE (ENCyclopedia of DNA elements) project. Science 306(5696):636–640

    Article  CAS  Google Scholar 

  • Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103(10):1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong D-L, Yang B-F (2011) Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure. Acta Pharm Sin B 1(1):1–7

    Article  CAS  Google Scholar 

  • Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284(43):29514–29525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong D-L, Chen C, Huo R, Wang N, Li Z, Tu Y-J, Hu J-T, Chu X, Huang W, Yang B-F (2010) Reciprocal repression between MicroRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension 55(4):946–952

    Article  CAS  PubMed  Google Scholar 

  • Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P (2009) miR-133 and miR-30 regulate connective tissue growth factor Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104(2):170–178

    Article  CAS  PubMed  Google Scholar 

  • Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899

    Article  PubMed  CAS  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98

    Article  CAS  PubMed  Google Scholar 

  • Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47(8):C7–C12

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C (2011a) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124(6):720–730

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C, Loyer X, Soutschek J, Brand T, Tuschl T, Heineke J, Martin U, Schulte-Merker S, Ertl G, Engelhardt S, Bauersachs J, Thum T (2011b) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124(6):720–730

    Article  CAS  PubMed  Google Scholar 

  • Frank D, Gantenberg J, Boomgaarden I, Kuhn C, Will R, Jarr K-U, Eden M, Kramer K, Luedde M, Mairbäurl H (2012) MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3. J Mol Cell Cardiol 52(3):711–717

    Article  CAS  PubMed  Google Scholar 

  • Fu D-G (2015) Cardiac arrhythmias: diagnosis, symptoms, and treatments. Cell Biochem Biophys 73(2):291–296

    Article  CAS  PubMed  Google Scholar 

  • Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L, Thum T, Laggerbauer B, Engelhardt S (2013) MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127(21):2097–2106

    Article  CAS  PubMed  Google Scholar 

  • Gerin I, Clerbaux L-A, Haumont O, Lanthier N, Das AK, Burant CF, Leclercq IA, MacDougald OA, Bommer GT (2010) Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285(44):33652–33661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A (2008) miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48(4):648–656

    Article  CAS  PubMed  Google Scholar 

  • Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A, Nattel S, Hohnloser SH (2009) Changes in microRNA-1 expression and I K1 up-regulation in human atrial fibrillation. Heart Rhythm 6(12):1802–1809

    Article  PubMed  Google Scholar 

  • Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramírez CM, Mattison JA, de Cabo R, Suárez Y, Fernández-Hernando C (2013) A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 33(11):2339–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedeke L, Rotllan N, Canfrán-Duque A, Aranda JF, Ramírez CM, Araldi E, Lin C-S, Anderson NN, Wagschal A, De Cabo R (2015) MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 21(11):1280–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurha P, Wang T, Larimore AH, Sassi Y, Abreu-Goodger C, Ramirez MO, Reddy AK, Engelhardt S, Taffet GE, Wehrens XH (2013) microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS ONE 8(9):e75882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Sayed D, He M, Abdellatif M (2009) miRNA-26 plays essential role in myocyte survival and hypertrophy by regulating GATA4. Circulation 120(Suppl 18):S732–S732

    Google Scholar 

  • He S, Liu P, Jian Z, Li J, Zhu Y, Feng Z, Xiao Y (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 441(4):763–769

    Article  CAS  PubMed  Google Scholar 

  • Ho P-C, Chang K-C, Chuang Y-S, Wei L-N (2011) Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production. FASEB J 25(5):1758–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga Y (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 107(40):17321–17326

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, Horiguchi M, Nakamura T, Chonabayashi K, Hishizawa M (2012) MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE−/− mice. J Am Heart Assoc 1(6):e003376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, Martelli F (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122(11 suppl 1):S124–S131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z-P, Chen J, Seok H, Zhang Z, Kataoka M, Hu X, Wang D-Z (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112(9):1234–1243. https://doi.org/10.1161/CIRCRESAHA.112.300682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee K-H, Ma Q, Kang PM, Golub TR (2009) MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29(8):2193–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izarra A, Moscoso I, Levent E, Cañón S, Cerrada I, Díez-Juan A, Blanca V, Núñez-Gil I-J, Valiente I, Ruíz-Sauri A (2014) miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Rep 3(6):1029–1042

    Article  CAS  Google Scholar 

  • Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86(11):1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Ke Z-P, Xu P, Shi Y, Gao A-M (2016) MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget 7(20):28796

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller T, Boeckel JN, Gross S, Klotsche J, Palapies L, Leistner D, Pieper L, Stalla GK, Lehnert H, Silber S, Pittrow D, Maerz W, Dorr M, Wittchen HU, Baumeister SE, Volker U, Felix SB, Dimmeler S, Zeiher AM (2017) Improved risk stratification in prevention by use of a panel of selected circulating microRNAs. Sci Rep 7(1):4511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 26(4):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140(1):111–122

    Article  CAS  PubMed  Google Scholar 

  • Kim N-H, Kang PM (2010) Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J 40(7):299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27(5):1859–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Tian J, Guo X, Huang L, Xu Y, Wang C, Wang J, Ren A, Yuan W, Lin L (2012) Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes. Physiol Res 61(6):555

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li R, Zhang C, Bian H-J, Wang F, Xiao J, Liu S-W, Yi W, Zhang M-X, Wang S-X (2014) MicroRNA-7a/b protects against cardiac myocyte injury in ischemia/reperfusion by targeting poly (ADP-ribose) polymerase. PLoS ONE 9(3):e90096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8(1):1

    Article  CAS  Google Scholar 

  • Liang W, Guo J, Li J, Bai C, Dong Y (2016) Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun 478(3):1416–1422

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li P-F (2009) miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA 106(29):12103–12108

    Article  CAS  PubMed  Google Scholar 

  • Ling T-Y, Wang X-L, Chai Q, Lau T-W, Koestler CM, Park SJ, Daly RC, Greason KL, Jen J, Wu L-Q (2013) Regulation of the SK3 channel by microRNA-499—potential role in atrial fibrillation. Heart Rhythm 10(7):1001–1009

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, Steer BM, Ingram AJ, Gupta M, Al-Omran M (2012) MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126(11 suppl 1):S81–S90

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Luo X, Bai Y (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122(23):2378–2387. https://doi.org/10.1161/CIRCULATIONAHA.110.958967

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Zhang H, Xiao J, Wang Z (2010) Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications. Cell Physiol Biochem 25(6):571–586

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang N, Lin H, Xiao L, Maguy A, Qi X-Y (2013) MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J Clin Invest 123(5):1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Yang B, Nattel S (2015) MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol 12(2):80–90

    Article  CAS  PubMed  Google Scholar 

  • Lv G, Shao S, Dong H, Bian X, Yang X, Dong S (2014) MicroRNA-214 protects cardiac myocytes against H2O2-induced injury. J Cell Biochem 115(1):93–101

    Article  CAS  PubMed  Google Scholar 

  • Madrigal-Matute J, Rotllan N, Aranda JF, Fernández-Hernando C (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15(5):322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malakootian M, Azad FM, Naeli P, Pakzad M, Fouani Y, Bajgan ET, Baharvand H, Mowla SJ (2017) Novel spliced variants of OCT4, OCT4C and OCT4C1, with distinct expression patterns and functions in pluripotent and tumor cell lines. Eur J Cell Biol 96(4):347–355

    Article  CAS  PubMed  Google Scholar 

  • Mann DL, Bristow MR (2005) Mechanisms and models in heart failure the biomechanical model and beyond. Circulation 111(21):2837–2849

    Article  PubMed  Google Scholar 

  • Marquart TJ, Allen RM, Ory DS, Baldán Á (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 107(27):12228–12232

    Article  CAS  PubMed  Google Scholar 

  • Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Can Res 66(22):10843–10848

    Article  CAS  Google Scholar 

  • Martins PADC, De Windt LJ (2012) MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res 93(4):563–572. https://doi.org/10.1093/cvr/cvs013

    Article  CAS  Google Scholar 

  • Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106(1):166–175

    Article  CAS  PubMed  Google Scholar 

  • McKinsey TA, Olson EN (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115(3):538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meloni M, Marchetti M, Garner K, Littlejohns B, Sala-Newby G, Xenophontos N, Floris I, Suleiman M-S, Madeddu P, Caporali A (2013) Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther 21(7):1390–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva

    Google Scholar 

  • Mihl C, Dassen W, Kuipers H (2008) Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J 16(4):129–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan MG, Holeiter M, Brauchle E, Layland SL, Lu Y, Deb A, Pandit A, Nsair A, Schenke-Layland K (2018) Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng Part A 24(1–2):57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124(14):1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16(3):223–229

    Article  CAS  PubMed  Google Scholar 

  • Musa H, Carlton L, Klos M, Vikstrom K, Anumonwo J, Jalife J, Berenfeld O (2013) Arrhythmogenesis in a novel murine model with KCNJ2 mutation of familial atrial fibrillation. Heart Rhythm 10(11):1749

    Article  Google Scholar 

  • Naeli P, Mirzadeh F, Malakootian M, Mowla SJ (2017) Post-transcriptional regulation of PCSK9 by miR-191, miR-222 and miR-224. Front Genet 8:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagalingam RS, Sundaresan NR, Noor M, Gupta MP, Solaro RJ, Gupta M (2017) Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor beta (TGFbeta1)-dependent paracrine mechanism. J Biol Chem 292(12):5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal V, Rai R, Place AT, Murphy SB, Verma SK, Ghosh AK, Vaughan DE (2015) MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation 133(3):291–301. https://doi.org/10.1161/CIRCULATIONAHA.115.018174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Näär AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328(5985):1566–1569

    Article  CAS  PubMed  Google Scholar 

  • Ni CW, Qiu H, Jo H (2011) MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol 300(5):H1762–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi H, Ono K, Iwanaga Y, Horie T, Nagao K, Takemura G, Kinoshita M, Kuwabara Y, Mori RT, Hasegawa K (2010) MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem 285(7):4920–4930

    Article  CAS  PubMed  Google Scholar 

  • O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104(5):1604–1609

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Chung WJ, Lai EC (2008) The long and short of inverted repeat genes in animals: microRNAs, mirtrons and hairpin RNAs. Cell Cycle 7(18):2840–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28(9):2005–2016

    Article  CAS  PubMed  Google Scholar 

  • Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6(239):239ps3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orenes-Piñero E, Montoro-García S, Patel JV, Valdés M, Marín F, Lip GY (2013) Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol 167(5):1651–1659

    Article  PubMed  Google Scholar 

  • Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, van Rooij E, Olson EN (2010) Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Investig 120(11):3912–3916

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208(3):549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M (2010) An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal 22(7):1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X (2011a) Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478(7369):404–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, Van Gils JM, Rayner AJ, Chang AN, Suarez Y (2011b) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121(7):2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X-P, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan G-C (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119(17):2357–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy S, Khanna S, Hussain S-RA, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovas Res 82(1):21–29

    Article  CAS  Google Scholar 

  • Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov A-F, Dohmen PM, Choi Y-H, Wahlers T (2016) Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res 22:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Santovito D, Mandolini C, Marcantonio P, De Nardis V, Bucci M, Paganelli C, Magnacca F, Ucchino S, Mastroiacovo D, Desideri G (2013) Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets 17(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • Santulli G (2013) Epidemiology of cardiovascular disease in the 21st century: updated numbers and updated facts. J Cardiovasc Dis 1(1):1–2

    Google Scholar 

  • Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424

    Article  CAS  PubMed  Google Scholar 

  • Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20(4):368–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha M, Ghatak S, Roy S, Sen CK (2015) microRNA-200b as a Switch for Inducible Adult Angiogenesis. Antioxid Redox Signal 22(14):1257–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song XW, Li Q, Lin L, Wang XC, Li DF, Wang GK, Ren AJ, Wang YR, Qin YW, Yuan WJ (2010) MicroRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. J Cell Physiol 225(2):437–443

    Article  CAS  PubMed  Google Scholar 

  • Sucharov C, Bristow MR, Port JD (2008) miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 45(2):185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sucharov CC, Kao DP, Port JD, Karimpour-Fard A, Quaife RA, Minobe W, Nunley K, Lowes BD, Gilbert EM, Bristow MR (2017) Myocardial microRNAs associated with reverse remodeling in human heart failure. JCI Insight 2(2):e89169

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen J-F, Newman M, Rojas M, Hammond SM, Wang D-Z (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42(6):1137–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teringova E, Tousek P (2017) Apoptosis in ischemic heart disease. J Transl Med 15(1):87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984

    Article  CAS  PubMed  Google Scholar 

  • Tijsen AJ, Van Der Made I, van den Hoogenhof MM, Wijnen WJ, van Deel ED, De Groot NE, Alekseev S, Fluiter K, Schroen B, Goumans M-J (2014) The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res 104(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67(1):21–29

    Article  PubMed  CAS  Google Scholar 

  • van Middendorp LB, Kuiper M, Munts C, Wouters P, Maessen JG, van Nieuwenhoven FA, Prinzen FW (2017) Local microRNA-133a downregulation is associated with hypertrophy in the dyssynchronous heart. ESC Heart Fail 4(3):241–251

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103(48):18255–18260

    Article  PubMed  CAS  Google Scholar 

  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579

    Article  PubMed  CAS  Google Scholar 

  • Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105(35):13027–13032

    Article  PubMed  Google Scholar 

  • Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, Collins FS, Remaley AT, Sethupathy P (2013) MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57(2):533–542

    Article  CAS  PubMed  Google Scholar 

  • Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, Palmisano BT, Tabet F, Cui HL, Rye K-A (2014) MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci USA 111(40):14518–14523

    Article  CAS  PubMed  Google Scholar 

  • Wagschal A, Najafi-Shoushtari SH, Wang L, Goedeke L, Sinha S, Black JC, Ramírez CM, Li Y, Tewhey R, Hatoum I (2015) Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med 21(11):1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waller C, Hiller K-H, Pfaff D, Gattenlöhner S, Ertl G, Bauer WR (2008) Functional mechanisms of myocardial microcirculation in left ventricular hypertrophy: A hypothetical model of capillary remodeling post myocardial infarction. Microvasc Res 75(1):104–111

    Article  PubMed  Google Scholar 

  • Wang M-D, Franklin V, Sundaram M, Kiss RS, Ho K, Gallant M, Marcel YL (2007) Differential regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages. J Biol Chem 282(31):22525–22533

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Long B, Zhou J, Li P-F (2010) miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem 285(16):11903–11912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-X, Jiao J-Q, Li Q, Long B, Wang K, Liu J-P, Li Y-R, Li P-F (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17(1):71–78

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Liu F, Zhou L, Ding S, Long B, Liu C, Sun T, Fan Y, Sun L, Li P (2013) miR-874 regulates myocardial necrosis by targeting caspase-8. Cell Death Dis 4(7):e709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Jia Z, Zhang C, Sun M, Wang W, Chen P, Ma K, Zhang Y, Li X, Zhou C (2014) miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biol 11(4):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalán-Campos J, Hartmann P, Thiemann A, Weber C, Schober A (2013) The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1-and microRNA-155-dependent pathway during atherosclerosis. Circulation 127(15):1609–1619. https://doi.org/10.1161/CIRCULATIONAHA.112.000736

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Liang D, Zhang Y, Liu Y, Zhang H, Liu Y, Li L, Liang X, Sun Y, Chen Y-H (2011) MicroRNA expression signature in atrial fibrillation with mitral stenosis. Physiol Genomics 43(11):655–664

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Lu Y, Wang Z (2008) Control of cardiac excitability by microRNAs. Cardiovasc Res 79(4):571–580

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J (2011) Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Qin Y, Shao S, Yu Y, Zhang C, Dong H, Lv G, Dong S (2016) MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int Heart J 57(2):247–250

    Article  CAS  PubMed  Google Scholar 

  • You X-Y, Huang J-H, Liu B, Liu S-J, Zhong Y, Liu S-M (2014) HMGA1 is a new target of miR-195 involving isoprenaline-induced cardiomyocyte hypertrophy. Biochemistry (Moscow) 79(6):538–544

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu WT, Jegga AG, Fan G-C (2010) Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol 49(5):841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Yang Y, Wang Y, Li J, Schiller PW, Peng T (2011) MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc Res 92(1):75–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research grant awarded to Dr. Mahshid Malakootian from the National Institute for Medical Research Development (Grant No. 943104) and the Council for Stem Cell Sciences and Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahshid Malakootian.

Ethics declarations

Conflict of interest

Authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzadeh Azad, F., Arabian, M., Maleki, M. et al. Small Molecules with Big Impacts on Cardiovascular Diseases. Biochem Genet 58, 359–383 (2020). https://doi.org/10.1007/s10528-020-09948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-020-09948-z

Keywords

Navigation