Skip to main content

Advertisement

Log in

Bone Growth is Influenced by Fructose in Adolescent Male Mice Lacking Ketohexokinase (KHK)

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Fructose is metabolized in the cytoplasm by the enzyme ketohexokinase (KHK), and excessive consumption may affect bone health. Previous work in calcium-restricted, growing mice demonstrated that fructose disrupted intestinal calcium transport. Thus, we hypothesized that the observed effects on bone were dependent on fructose metabolism and took advantage of a KHK knockout (KO) model to assess direct effects of high plasma fructose on the long bones of growing mice. Four groups (n = 12) of 4-week-old, male, C57Bl/6 background, congenic mice with intact KHK (wild-type, WT) or global knockout of both isoforms of KHK-A/C (KHK-KO), were fed 20% glucose (control diet) or fructose for 8 weeks. Dietary fructose increased by 40-fold plasma fructose in KHK-KO compared to the other three groups (p < 0.05). Obesity (no differences in epididymal fat or body weight) or altered insulin was not observed in either genotype. The femurs of KHK-KO mice with the highest levels of plasma fructose were shorter (2%). Surprisingly, despite the long-term blockade of KHK, fructose feeding resulted in greater bone mineral density, percent volume, and number of trabeculae as measured by µCT in the distal femur of KHK-KO. Moreover, higher plasma fructose concentrations correlated with greater trabecular bone volume, greater work-to-fracture in three-point bending of the femur mid-shaft, and greater plasma sclerostin. Since the metabolism of fructose is severely inhibited in the KHK-KO condition, our data suggest mechanism(s) that alter bone growth may be related to the plasma concentration of fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsanzi E, Fitch CW, Tou JC (2008) Effect of consuming different caloric sweeteners on bone health and possible mechanisms. Nutr Rev 66(6):301–309. https://doi.org/10.1111/j.1753-4887.2008.00037.x

    Article  PubMed  Google Scholar 

  2. Cirillo P, Gersch MS, Mu W et al (2009) Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. J Am Soc Nephrol 20(3):545–553. https://doi.org/10.1681/ASN.2008060576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malik VS, Popkin BM, Bray GA et al (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33(11):2477–2483. https://doi.org/10.2337/dc10-1079

    Article  PubMed  PubMed Central  Google Scholar 

  4. Douard V, Patel C, Lee J et al (2014) Chronic high fructose intake reduces serum 1,25 (OH)2D3 levels in calcium-sufficient rodents. PLoS ONE 9(4):e93611. https://doi.org/10.1371/journal.pone.0093611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma D, Jones G (2004) Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: a population-based case-control study. Calcif Tissue Int 75(4):286–291. https://doi.org/10.1007/s00223-004-0274-y

    Article  CAS  PubMed  Google Scholar 

  6. Wyshak G, Frisch RE (1994) Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health 15(3):210–215. https://doi.org/10.1016/1054-139X(94)90506-1

    Article  CAS  PubMed  Google Scholar 

  7. Felice JI, Gangoiti MV, Molinuevo MS et al (2014) Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism 63(2):296–305. https://doi.org/10.1016/j.metabol.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  8. Felice JI, Schurman L, McCarthy AD et al (2017) Effects of fructose-induced metabolic syndrome on rat skeletal cells and tissue, and their responses to metformin treatment. Diabetes Res Clin Pract 126:202–213. https://doi.org/10.1016/j.diabres.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  9. Douard V, Suzuki T, Sabbagh Y et al (2012) Dietary fructose inhibits lactation-induced adaptations in rat 1,25-(OH)(2)D(3) synthesis and calcium transport. FASEB J 26(2):707–721. https://doi.org/10.1096/fj.11-190264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsanzi E, Light HR, Tou JC (2008) The effect of feeding different sugar-sweetened beverages to growing female Sprague–Dawley rats on bone mass and strength. Bone 42(5):960–968. https://doi.org/10.1016/j.bone.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  11. Yarrow JF, Toklu HZ, Balaez A et al (2016) Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone 85:99–106. https://doi.org/10.1016/j.bone.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bass EF, Baile CA, Lewis RD, Giraudo SQ (2013) Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res 33(12):1063–1071. https://doi.org/10.1016/j.nutres.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  13. Blair H, Schlesinger P, Huang C, Zaidi M (2007) Calcium signalling and calcium transport in bone disease. Subcell Biochem 45:539–562. https://doi.org/10.1007/978-1-4020-6191-2_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller CO, Yang X, Lu K et al (2018) Ketohexokinase knockout mice, a model for essential fructosuria, exhibit altered fructose metabolism and are protected from diet-induced metabolic defects. Am J Physiol Endocrinol Metab 315:E386–E393. https://doi.org/10.1152/ajpendo.00027.2018

    Article  CAS  PubMed  Google Scholar 

  15. Tappy L, Rosset R (2019) Health outcomes of a high fructose intake: the importance of physical activity. J Physiol 597:3561–3571. https://doi.org/10.1113/JP278246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scriver CR (1989) The metabolic and molecular bases of inherited disease, 6th edn. McGraw-Hill, Health Professions Division, New York

    Google Scholar 

  17. Lasker M (1941) Essential fructosuria. Human biology 13(1):51–63

    Google Scholar 

  18. Asipu A, Hayward BE, O'Reilly J, Bonthron DT (2003) Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria. Diabetes 52(9):2426–2432. https://doi.org/10.2337/diabetes.52.9.2426

    Article  CAS  PubMed  Google Scholar 

  19. Diggle CP, Shires M, Leitch D et al (2009) Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem 57(8):763–774. https://doi.org/10.1369/jhc.2009.953190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel C, Douard V, Yu S et al (2015) Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am J Physiol Regul Integr Comp Physiol 309(5):R499–509. https://doi.org/10.1152/ajpregu.00128.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diggle CP, Shires M, McRae C et al (2010) Both isoforms of ketohexokinase are dispensable for normal growth and development. Physiol Genom 42A(4):235–243. https://doi.org/10.1152/physiolgenomics.00128.2010

    Article  CAS  Google Scholar 

  22. Ishimoto T, Lanaspa MA, Le MT et al (2012) Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc Natl Acad Sci USA 109(11):4320–4325. https://doi.org/10.1073/pnas.1119908109

    Article  PubMed  Google Scholar 

  23. Lanaspa MA, Andres-Hernando A, Orlicky DJ et al (2018) Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice. J Clin Invest 128(6):2226–2238. https://doi.org/10.1172/JCI94427

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sugimoto K, Inui H, Yamanouchi T (2012) Assays of fructose in experimental nutrition. In: Preedy VR (ed) Dietary sugars: chemistry, analysis, function and effects, 3rd edn. The Royal Society of Chemistry, London, pp 464–483

    Chapter  Google Scholar 

  25. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  26. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17. https://doi.org/10.1002/jbmr.1805

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  28. Rizzoli R (2008) Nutrition: its role in bone health. Best Pract Res Clin Endocrinol Metab 22(5):813–829. https://doi.org/10.1016/j.beem.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  29. Rizzoli R (2014) Nutritional aspects of bone health. Best Pract Res Clin Endocrinol Metab 28(6):795–808. https://doi.org/10.1016/j.beem.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  30. Jang C, Hui S, Lu W et al (2018) The small intestine converts dietary fructose into glucose and organic acids. Cell Metab 27:351–361. https://doi.org/10.1016/j.cmet.2017.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonthron DT, Brady N, Donaldson IA, Steinmann B (1994) Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase). Hum Mol Genet 3(9):1627–1631. https://doi.org/10.1093/hmg/3.9.1627

    Article  CAS  PubMed  Google Scholar 

  32. Laron Z (1961) Essential benign fructosuria. Arch Dis Child 36:273–277. https://doi.org/10.1136/adc.36.187.273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patel C, Sugimoto K, Douard V et al (2015) Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice. Am J Physiol Gastrointest Liver Physiol 309(9):G779–790. https://doi.org/10.1152/ajpgi.00188.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Douard V, Asgerally A, Sabbagh Y et al (2010) Dietary fructose inhibits intestinal calcium absorption and induces vitamin D insufficiency in CKD. J Am Soc Nephrol 21(2):261–271. https://doi.org/10.1681/ASN.2009080795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Douard V, Sabbagh Y, Lee J et al (2013) Excessive fructose intake causes 1,25-(OH)(2)D(3)-dependent inhibition of intestinal and renal calcium transport in growing rats. Am J Physiol Endocrinol Metab 304(12):E1303–1313. https://doi.org/10.1152/ajpendo.00582.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Panda DK, Miao D, Bolivar I et al (2004) Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 279(16):16754–16766. https://doi.org/10.1074/jbc.M310271200

    Article  CAS  PubMed  Google Scholar 

  37. Panda DK, Miao D, Tremblay ML et al (2001) Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98(13):7498–7503. https://doi.org/10.1073/pnas.131029498

    Article  CAS  PubMed  Google Scholar 

  38. Hirota Y, Nakagawa K, Mimatsu S et al (2017) Nongenomic effects of 1α,25-dihydroxyvitamin D3 on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice. Biochem Biophys Res Commun 483(1):359–365. https://doi.org/10.1016/j.bbrc.2016.12.139

    Article  CAS  PubMed  Google Scholar 

  39. Miller WL, Portale AA (2000) Vitamin D 1 α-hydroxylase. Trends Endocrinol Metab 11(8):315–319. https://doi.org/10.1016/S1043-2760(00)00287-3

    Article  CAS  PubMed  Google Scholar 

  40. Miller WL (2017) Genetic disorders of Vitamin D biosynthesis and degradation. J Steroid Biochem Mol Biol 165(Pt A):101–108. https://doi.org/10.1016/j.jsbmb.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  41. Petkovich M, Jones G (2011) CYP24A1 and kidney disease. Curr Opin Nephrol Hypertens 20(4):337–344. https://doi.org/10.1097/MNH.0b013e3283477a7b

    Article  CAS  PubMed  Google Scholar 

  42. Jatkar A, Kurland IJ, Judex S (2017) Diets high in fat or fructose differentially modulate bone health and lipid metabolism. Calcif Tissue Int 100(1):20–28. https://doi.org/10.1007/s00223-016-0205-8

    Article  CAS  PubMed  Google Scholar 

  43. Guo M, Pegoraro AF, Mao A et al (2019) Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc Natl Acad Sci USA 114(41):E8618–E8627. https://doi.org/10.1073/pnas.1705179114

    Article  CAS  Google Scholar 

  44. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615. https://doi.org/10.1016/j.bone.2007.12.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Grosfeld A, Williams E et al (2019) Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB J 33(6):7126–7142. https://doi.org/10.1096/fj.201801526RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH Award Numbers: AR063351, AR074670). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We thank Drs. Joseph Geissler, George Pellegrino, Stephen Flowers, Patricia Buckendahl, and Chirag Patel, as well as Brian Canter, Mayuri Kinkhabwala, Juby Roy, David Sadegh, Timothy Ngoge, Alexander Kheshvadjian, Joe Lumuti, and Luke Fritzky for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was approved by all authors, whom are solely responsible for the decision to submit for publication. There are no other persons who satisfied the criteria for authorship but are not listed. EW, VD, RF, and JF contributed to study design; EW, KS, HI, FD, XZ, and KK were involved in data collection; EW, VD, RF, and JF performed data analysis and interpretation; EW wrote the first draft; and VD, RF, and JF were involved in critical editing of the final version of the manuscript.

Corresponding author

Correspondence to J. Christopher Fritton.

Ethics declarations

Conflict of interest

Edek A. J. Williams, Veronique Douard, Keiichiro Sugimoto, Hiroshi Inui, Fabienne Devime, Xufei Zhang, Kunihiro Kishida, Ronaldo P. Ferraris, and J. Christopher Fritton declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Animal care and experimental protocols were approved by the Rutgers Institutional Animal Care and Use Committee (IACUC) and were done in accordance with institutional guidelines and under the supervision of authorized investigators.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 37 kb)

Supplementary file2 (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, E.A.J., Douard, V., Sugimoto, K. et al. Bone Growth is Influenced by Fructose in Adolescent Male Mice Lacking Ketohexokinase (KHK). Calcif Tissue Int 106, 541–552 (2020). https://doi.org/10.1007/s00223-020-00663-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00663-w

Keywords

Navigation