Skip to main content
Log in

Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Ethanol-tolerant Arthrobacter simplex is desirable since ethanol facilitates hydrophobic substrates dissolution on an industrial scale. Herein, alterations in compatible solutes were investigated under ethanol stress. The results showed that the amount of trehalose and glycerol increased while that of glutamate and proline decreased. The trehalose protectant role was verified and its concentration was positively related to the degree of cell tolerance. otsA, otsB and treS, three trehalose biosynthesis genes in A. simplex, also enhanced Escherichia coli stress tolerance, but the increased tolerance was dependent on the type and level of the stress. A. simplex strains accumulating trehalose showed a higher productivity in systems containing more ethanol and substrate because of better viability. The underlying mechanisms of trehalose were involved in better cell integrity, higher membrane stability, stronger reactive oxygen species scavenging capacity and higher energy level. Therefore, trehalose was a general protectant and the upregulation of its biosynthesis by genetic modification enhanced cell stress tolerance, consequently promoted productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song B, Zhou Q, Xue HJ, Liu JJ, Zheng YY, Shen YB, Wang M, Luo JM (2018) IrrE improves organic solvent tolerance and Δ1-dehydrogenation productivity of Arthrobacter simplex. J Agric Food Chem 66:5210–5220

    CAS  PubMed  Google Scholar 

  2. Vianna CR, Silva CLC, Neves MJ, Rosa CA (2008) Saccharomyce scerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek 93:205–217

    CAS  PubMed  Google Scholar 

  3. Nicolaou SA, Gaida SM, Papoutsakis ETA (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331

    CAS  PubMed  Google Scholar 

  4. Mahmud SA, Hirasawa T, Shimizu H (2010) Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 109(3):262–266

    CAS  PubMed  Google Scholar 

  5. Mansure JJC, Panek A, Crowe LM, Crowe JH (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim Biophys Acta 1191(2):309–316

    CAS  PubMed  Google Scholar 

  6. Mansure JJ, Souza RC, Panek AD (1997) Trehalose metabolism in Saccharomyces cerevisiae during alcoholic fermentation. Biotechnol Lett 19:1201–1203

    CAS  Google Scholar 

  7. Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90(3):313–320

    CAS  PubMed  Google Scholar 

  8. Pataro C, Guerra JB, Gomes FCO, Neves MJ, Pimentel PF, Rosa CA (2002) Trehalose accumulation, invertase activity and physiological characteristics of yeasts isolated from 24 h fermentative cycles during the production of artisanal Brazilian cachaça. Braz. J Microbiol 33:202–208

    CAS  Google Scholar 

  9. Sharma SC (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152:11–15

    CAS  PubMed  Google Scholar 

  10. Van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210

    Google Scholar 

  11. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwenhoek 58:209–217

    CAS  PubMed  Google Scholar 

  12. Bandara A, Fraser S, Chambers PJ, Stanley GA (2009) Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9(8):1208–1216

    CAS  PubMed  Google Scholar 

  13. Alexandre H, Plourde L, Charpentier C, Francois J (1998) Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology 144:1103–1111

    CAS  PubMed  Google Scholar 

  14. Gomes FCO, Pataro C, Guerra JB, Neves MJ, Correa SR (2002) Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaça. Can J Microbiol 48:399–406

    CAS  PubMed  Google Scholar 

  15. Ribeiro MJS, Leao LSC, Morais PB, Rosa CA, Panek AD (1999) Trehalose accumulation by tropical yeast strains submitted to stress conditions. Antonie Van Leeuwenhoek 75:245–251

    CAS  PubMed  Google Scholar 

  16. Kim J, Alizadeh P, Harding T, Hefner-Gravink A, Klionsky DJ (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: Potential commercial applications. Appl Environ Microbiol 62(5):1563–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung YJ, Park HD (2005) Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae. Biotechnol Lett 27(23–24):1855–1859

    CAS  PubMed  Google Scholar 

  18. Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1999) Accumulation of trehalose by overexpression of tps1, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe. Appl Environ Microbiol 65(5):2020–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang PM, Zheng DQ, Chi XQ, Li O, Qian CD, Liu TZ, Zhang XY, Du FG, Sun PY, Qu AM, Wu XC (2014) Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Bioresource Technol 152:371–376

    CAS  Google Scholar 

  21. Woodruff L, Boyle NR, Gill RT (2013) Engineering improved ethanol production in Escherichia coli with a genome-wide approach. Metab Eng 17:1–11

    CAS  PubMed  Google Scholar 

  22. Thomas KC, Hynes SH, Ingledew WM (1994) Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 60:1519–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623

    CAS  PubMed  Google Scholar 

  24. Underwood SA, Buszko ML, Shanmugam KT, Ingram LO (2004) Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 70:2734–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo JM, Song ZY, Ning J, Cheng YX, Wang YX, Cui FF, Shen Y, Wang M (2018) The global ethanol-induced alteration in Arthrobacter simplex and its mutants with enhanced ethanol tolerance. Appl Microbiol Biotechnol 102:9331–9350

    CAS  PubMed  Google Scholar 

  26. Sandu C, Chiribau CB, Sachelaru P, Brandsch R (2005) Plasmids for nicotine-dependent and -independent gene expression in Arthrobacter nicotinovorans and other Arthrobacter species. Appl Environ Microbiol 71:8920–8924

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo JM, Ning J, Wang YX, Cheng YX, Zheng Y, Shen YB, Wang M (2013) The effect of ethanol on cell properties and steroid 1-en-dehydrogenation biotransformation of Arthrobacter simplex. Biotechnol Appl Bioc 61:555–564

    Google Scholar 

  28. Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79:273–283

    CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  30. Devantier R, Scheithauer B, Villas-Boas SG, Pedersen S, Olsson L (2005) Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 90:703–714

    CAS  PubMed  Google Scholar 

  31. Liang LK, Wang XK, Zhu KL, Chi ZM (2007) Trehalose synthesis in Saccharomycopsis fibuligera does not respond to stress treatment. Appl Microbiol Biotechnol 74:1084–1091

    CAS  PubMed  Google Scholar 

  32. Nagahisa K, Hirasawa T, Mahmud AS, Shimizu H, Yoshikawa K, Ashitani K (2010) Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae. Yeats 26:17–30

    Google Scholar 

  33. Vilchez S, Tunnacliffe A, Manzanera M (2008) Tolerance of plastic-encapsulated Pseudomonas putida KT2440 to chemical stress. Extremophiles 12(2):297–299

    CAS  PubMed  Google Scholar 

  34. Manzanera M, Vilchez S, Tunnacliffe A (2004) Plastic encapsulation of stabilized Escherichia coli and Pseudomonas putida. Appl Environ Microbiol 70(5):3143–3145

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Purvis JE, Yomano LP, Ingram LO (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 71:3761–3769

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller EN, Ingram LO (2008) Sucrose and overexpression of trehalose biosynthetic genes (otsBA) increase desiccation tolerance of recombinant Escherichia coli. Biotechnol Lett 30:503–508

    CAS  PubMed  Google Scholar 

  37. Nguyen AQ, Kim YG, Kim SB, Kim CJ (2013) Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (otsBA) for the production of β-carotene. Bioresource Technol 143:531–537

    CAS  Google Scholar 

  38. Ingram LO (1986) Microbial tolerance to alcohol:Role of cell membrane. Trends Biotechnol 4:40–44

    CAS  Google Scholar 

  39. Barry JA, Gawrisch K (1995) Effects of ethanol on lipid bilayers containing cholesterol, gangliosides and sphingomyelin. Biochemistry 34:8852–8860

    CAS  PubMed  Google Scholar 

  40. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    CAS  PubMed  Google Scholar 

  41. Iwahashi H, Obachi K, Fujii S, Komatsu Y (1995) The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae. Cell Mol Biol 41:763–766

    CAS  PubMed  Google Scholar 

  42. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    CAS  PubMed  Google Scholar 

  43. Arguelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    CAS  PubMed  Google Scholar 

  44. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    CAS  PubMed  Google Scholar 

  45. Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Arguelles JC (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606

    CAS  PubMed  Google Scholar 

  46. Herdeiro RS, Pereira MD, Panek AD, Eleutherio ECA (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Act 1760:340–346

    CAS  Google Scholar 

  47. Nery DCM, Silva CG, Mariani D, Fernandes PN, Pereira MD, Panek AD, Eleutherio ECA (2008) The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta 1780:1408–1411

    CAS  Google Scholar 

  48. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50(5):1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China (nos. 21978220), the Natural Science Foundation of Tianjin (nos. 18JCZDJC32500), Tianjin Technical Expert Project (nos. 19JCTPJC50800), the Open Fund of Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin Municipal Science and Technology Commission (17PTGCCX00190), and 2019 Tianjin innovation and entrepreneurship training program for college students (national grade) (201910057051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-mei Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Hj., Sun, Yh., Chang, Hw. et al. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance. Bioprocess Biosyst Eng 43, 895–908 (2020). https://doi.org/10.1007/s00449-020-02286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02286-9

Keywords

Navigation