Skip to main content

Advertisement

Log in

Magnetic resonance imaging of impingement and friction syndromes around the knee

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

The knee is a complex joint with its function dependent on a combination of osseous and soft tissue structures. Alteration in the relationship of these tissues, due to either acute or chronic repetitive injury with possible underlying congenital predisposing factors, can result in impingement between the structures resulting in pain, particularly on activity. The purpose of this article is to provide a comprehensive review of the MRI features of various impingement syndromes around the knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. De Maeseneer M, Wuertzer S, De Mey J, Shahabpour M. The imaging findings of impingement syndromes of the lower limb. Clin Radiol. 2017;72(12):1014–24.

    PubMed  Google Scholar 

  2. Aydingoz U, Maras Ozdemir Z, Gunes A, Ergen FB. MRI of lower extremity impingement and friction syndromes in children. Diagn Interv Radiol. 2016;22(6):566–73.

    PubMed  PubMed Central  Google Scholar 

  3. Faletti C, De Stefano N, Giudice G, Larciprete M. Knee impingement syndromes. Eur J Radiol. 1998;27(Suppl 1):S60–9.

    PubMed  Google Scholar 

  4. Grando H, Chang EY, Chen KC, Chung CB. MR imaging of extrasynovial inflammation and impingement about the knee. Magn Reson Imaging Clin N Am. 2014;22(4):725–41.

    PubMed  Google Scholar 

  5. Dye SF, Campagna-Pinto D, Dye CC, Shifflett S, Eiman T. Soft-tissue anatomy anterior to the human patella. J Bone Joint Surg Am. 2003;85(6):1012–7.

    PubMed  Google Scholar 

  6. Flores DV, Mejía Gómez C, Pathria MN. Layered approach to the anterior knee: normal anatomy and disorders associated with anterior knee pain. Radiographics. 2018;38(7):2069–101.

    PubMed  Google Scholar 

  7. Claes T, Claes S, De Roeck J, Claes T. Prepatellar friction syndrome: a common cause of knee pain in the elite cyclist. Acta Orthop Belg. 2015;81(4):614–9.

    PubMed  Google Scholar 

  8. Tsavalas N, Karantanas AH. Suprapatellar fat-pad mass effect: MRI findings and correlation with anterior knee pain. Am J Roentgenol. 2013;200(3):W291–6.

    Google Scholar 

  9. Jarraya M, Diaz LE, Roemer FW, Arndt WF, Goud AR, Guermazi A. MRI findings consistent with peripatellar fat pad impingement: how much related to patellofemoral maltracking? Magn Reson Med Sci. 2018;17(3):195–202.

    PubMed  Google Scholar 

  10. Draghi F, Ferrozzi G, Urciuoli L, Bortolotto C, Bianchi S. Hoffa’s fat pad abnormalities, knee pain and magnetic resonance imaging in daily practice. Insights Imaging. Springer Berlin Heidelberg. 2016;7(3):373–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Bohnsack M, Wilharm A, Hurschler C, Rühmann O, Stukenborg-Colsman C, Wirth CJ. Biomechanical and kinematic influences of a total infrapatellar fat pad resection on the knee. Am J Sports Med. 2004;32(8):1873–80.

    PubMed  Google Scholar 

  12. Kim SJ, Min BH, Kim HK. Arthroscopic anatomy of the infrapatellar plica. Arthroscopy. 1996;12(5):561–4.

    PubMed  CAS  Google Scholar 

  13. Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skelet Radiol. 2004;33(8):433–44.

    CAS  Google Scholar 

  14. Chung CB, Skaf A, Roger B, Campos J, Stump X, Resnick D. Patellar tendon-lateral femoral condyle friction syndrome: MR imaging in 42 patients. Skelet Radiol. 2001;30(12):694–7.

    CAS  Google Scholar 

  15. Widjajahakim R, Roux M, Jarraya M, Roemer FW, Neogi T, Lynch JA, et al. Relationship of trochlear morphology and patellofemoral joint alignment to superolateral Hoffa fat pad edema on MR images in individuals with or at risk for osteoarthritis of the knee: the MOST study. Radiology. 2017;284(3):806–14.

    PubMed  Google Scholar 

  16. LLopis E, Padrón M. Anterior knee pain. Eur J Radiol. 2007;62(1):27–43.

    PubMed  Google Scholar 

  17. De Smet AA, Davis KW, Dahab KS, Blankenbaker DG, del Rio AM, Bernhardt DT. Is there an association between superolateral Hoffa fat pad edema on MRI and clinical evidence of fat pad impingement? AJR Am J Roentgenol. 2012;199(5):1099–104.

    PubMed  Google Scholar 

  18. Campagna R, Pessis E, Biau DJ, Guerini H, Feydy A, Thevenin FS, et al. Is superolateral Hoffa fat pad edema a consequence of impingement between lateral femoral condyle and patellar ligament? Radiology. 2012;263(2):469–74.

    PubMed  Google Scholar 

  19. Subhawong TK, Eng J, Carrino JA, Chhabra A. Superolateral Hoffa’s fat pad edema: association with patellofemoral maltracking and impingement. Am J Roentgenol. 2010;195(6):1367–73.

    Google Scholar 

  20. Jibri ZA, Kamath S. Maltracking and impingement of superolateral Hoffa’s fat pad. Am J Roentgenol. 2011;197(6):W1164–W4.

    Google Scholar 

  21. Matcuk GR, Cen SY, Keyfes V, Patel DB, Gottsegen CJ, White EA. Superolateral hoffa fat-pad edema and patellofemoral maltracking: predictive modeling. AJR Am J Roentgenol. 2014;203(2):W207–12.

    PubMed  Google Scholar 

  22. Jarraya M, Guermazi A, Felson DT, Roemer FW, Nevitt MC, Torner J, et al. Is superolateral Hoffa’s fat pad hyperintensity a marker of local patellofemoral joint disease? - the MOST study. Osteoarthr Cartil. 2017;25(9):1459–67.

    CAS  Google Scholar 

  23. Li J, Sheng B, Yu F, Guo C, Lv F, Lv F, et al. Quantitative magnetic resonance imaging in patellar tendon-lateral femoral condyle friction syndrome: relationship with subtle patellofemoral instability. Skeletal Radiol. Springer Berlin Heidelberg. 2019;48(8):1251–9.

    PubMed  Google Scholar 

  24. Mehta K, Wissman R, England E, Dʼheurle A, Newton K, Kenter K. Superolateral Hoffa’s fat pad edema in collegiate volleyball players. J Comput Assist Tomogr. 2015;39(6):945–50.

    PubMed  Google Scholar 

  25. Hoffa A. The influence of the adipose tissue with regard to the pathology of the knee joint. JAMA. 1904;XLIII(12):795.

    Google Scholar 

  26. Kumar D, Alvand A, Beacon JP. Impingement of infrapatellar fat pad (Hoffa’s disease): results of high-portal arthroscopic resection. Arthroscopy. 2007;23(11):1180–1.

    PubMed  Google Scholar 

  27. Larbi A, Cyteval C, Hamoui M, Dallaudière B, Zarqane H, Viala P, et al. Hoffa’s disease: a report on 5 cases. Diagn Interv Imaging. 2014;95(11):1079–84.

    PubMed  CAS  Google Scholar 

  28. von Engelhardt LV, Tokmakidis E, Lahner M, Dàvid A, Haage P, Bouillon B, et al. Hoffa’s fat pad impingement treated arthroscopically: related findings on preoperative MRI in a case series of 62 patients. Arch Orthop Trauma Surg. 2010;130(8):1041–51.

    Google Scholar 

  29. Jacobson JA, Lenchik L, Ruhoy MK, Schweitzer ME, Resnick D. MR imaging of the infrapatellar fat pad of Hoffa. RadioGraphics. 1997;17(3):675–91.

    PubMed  CAS  Google Scholar 

  30. Abreu MR, Chung CB, Trudell D, Resnick D. Hoffa’s fat pad injuries and their relationship with anterior cruciate ligament tears: new observations based on MR imaging in patients and MR imaging and anatomic correlation in cadavers. Skelet Radiol. 2008;37(4):301–6.

    Google Scholar 

  31. Dupont JY. Synovial plicae of the knee. Controversies and review. CSM. 1997;16(1):87–122.

    CAS  Google Scholar 

  32. Ogata S, Uhthoff HK. The development of synovial plicae in human knee joints: an embryologic study. Arthroscopy. 1990;6(4):315–21.

    PubMed  CAS  Google Scholar 

  33. Jouanin T, Dupont JY, Halimi P, Lassau JP. Les plicae. Etude anatomique portant sur la dissection de 200 genoux. Anat Clin. 1982;4(1):47–53.

    Google Scholar 

  34. Nakayama A, Sugita T, Aizawa T, Takahashi A, Honma T. Incidence of medial plica in 3,889 knee joints in the Japanese population. Arthroscopy. 2011;27(11):1523–7.

    PubMed  Google Scholar 

  35. García-Valtuille R, Abascal F, Cerezal L, García-Valtuille A, Pereda T, Canga A, et al. Anatomy and MR imaging appearances of synovial plicae of the knee. RadioGraphics. 2002;22(4):775–84.

    PubMed  Google Scholar 

  36. Ewing J. Plica: pathologic or not? J Am Acad Orthop Surg. 1993;1(2):117–21.

    PubMed  CAS  Google Scholar 

  37. Lee PYF, Nixion A, Chandratreya A, Murray JM. Synovial plica syndrome of the knee: a commonly overlooked cause of anterior knee pain. Surg J (N Y). 2017;3(1):e9–e16.

    Google Scholar 

  38. Kim S-J, Kim J-Y, Lee JW. Pathologic infrapatellar plica. Arthroscopy. 2002;18(5):E25.

    PubMed  Google Scholar 

  39. Cothran RL, McGuire PM, Helms CA, Major NM, Attarian DE. MR imaging of infrapatellar plica injury. Am J Roentgenol. 2003;180(5):1443–7.

    Google Scholar 

  40. Ozcan M, Copuroğlu C, Ciftdemir M, Turan FN, Calpur OU. Does an abnormal infrapatellar plica increase the risk of chondral damage in the knee. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):218–21.

    PubMed  Google Scholar 

  41. Demirag B, Ozturk C, Karakayali M. Symptomatic infrapatellar plica. Knee Surg Sports Traumatol Arthrosc. 2006;14(2):156–60.

    PubMed  Google Scholar 

  42. Radu A, Discepola F, Volesky M, Munk PL, Le H. Posterior Hoffa’s fat pad impingement secondary to a thickened infrapatellar plica: a case report and review of the literature. J Radiol Case Rep. 2015;9(3):1–7.

    Google Scholar 

  43. Lapègue F, Sans N, Brun C, Bakouche S, Brucher N, Cambon Z, et al. Imaging of traumatic injury and impingement of anterior knee fat. Diagn Interv Imaging. 2016;97(7–8):789–807.

    PubMed  Google Scholar 

  44. Borja MJ, Jose J, Vecchione D, Clifford PD, Lesniak BP. Prefemoral fat pad impingement syndrome: identification and diagnosis. Am J Orthop (Belle Mead NJ). 2013;42(1):E9–11.

    Google Scholar 

  45. Soder RB, Mizerkowski MD, Petkowicz R, Baldisserotto M. MRI of the knee in asymptomatic adolescent swimmers: a controlled study. Br J Sports Med. 2012;46(4):268–72.

    PubMed  Google Scholar 

  46. Roth C, Jacobson J, Jamadar D, Caoili E, Morag Y, Housner J. Quadriceps fat pad signal intensity and enlargement on MRI: prevalence and associated findings. Am J Roentgenol. 2004;182(6):1383–7.

    Google Scholar 

  47. Shabshin N, Schweitzer ME, Morrison WB. Quadriceps fat pad edema: significance on magnetic resonance images of the knee. Skelet Radiol. 2006;35(5):269–74.

    Google Scholar 

  48. Wang J, Han W, Wang X, Pan F, Liu Z, Halliday A, et al. Mass effect and signal intensity alteration in the suprapatellar fat pad: associations with knee symptoms and structure. Osteoarthr Cartil. 2014;22(10):1619–26.

    CAS  Google Scholar 

  49. Schwaiger BJ, Mbapte Wamba J, Gersing AS, Nevitt MC, Facchetti L, McCulloch CE, et al. Hyperintense signal alteration in the suprapatellar fat pad on MRI is associated with degeneration of the patellofemoral joint over 48 months: data from the Osteoarthritis Initiative. Skelet Radiol. 2018;47(3):329–39.

    Google Scholar 

  50. Akao M, Ikemoto T, Takata T, Kitamoto K, Deie M. Suprapatellar plica classification and suprapatellar plica syndrome. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2019;17:10–5.

    PubMed  PubMed Central  Google Scholar 

  51. Dandy DJ. Anatomy of the medial suprapatellar plica and medial synovial shelf. Arthroscopy. 1990;6(2):79–85.

    PubMed  CAS  Google Scholar 

  52. Zidorn T. Classification of the suprapatellar septum considering ontogenetic development. Arthroscopy. 1992;8(4):459–64.

    PubMed  CAS  Google Scholar 

  53. Al-Hadithy N, Gikas P, Mahapatra AM, Dowd G. Review article: plica syndrome of the knee. J Orthop Surg (Hong Kong). 2011;19(3):354–8.

    Google Scholar 

  54. Bae DK, Nam GU, Sun SD, Kim YH. The clinical significance of the complete type of suprapatellar membrane. Arthroscopy. 1998;14(8):830–5.

    PubMed  CAS  Google Scholar 

  55. Kim SJ, Shin SJ, Koo TY. Arch type pathologic suprapatellar plica. Arthroscopy. 2001;17(5):536–8.

    PubMed  CAS  Google Scholar 

  56. Klontzas ME, Akoumianakis ID, Vagios I, Karantanas AH. MR imaging findings of medial tibial crest friction. Eur J Radiol. 2013;82(11):e703–6.

    PubMed  Google Scholar 

  57. Simeone FJ, Huang AJ, Chang CY, Smith M, Gill TJ, Bredella MA, et al. Posteromedial knee friction syndrome: an entity with medial knee pain and edema between the femoral condyle, sartorius and gracilis. Skelet Radiol. 2015;44(4):557–63.

    Google Scholar 

  58. Simeone FJ, Kheterpal A, Chang CY, Palmer WE, Bredella MA, Huang AJ, et al. Ultrasound-guided injection for the diagnosis and treatment of posteromedial knee friction syndrome. Skeletal Radiol. Springer Berlin Heidelberg. 2019;48(4):563–8.

    PubMed  Google Scholar 

  59. Boles CA, Martin DF. Synovial plicae in the knee. AJR Am Roentgen Ray Soc. 2001;177(1):221–7.

    CAS  Google Scholar 

  60. Kan H, Arai Y, Nakagawa S, Inoue H, Hara K, Minami G, et al. Characteristics of medial plica syndrome complicated with cartilage damage. Int Orthop. 2015;39(12):2489–94.

    PubMed  Google Scholar 

  61. Liu YW, Skalski MR, Patel DB, White EA, Tomasian A, Matcuk GR. The anterior knee: normal variants, common pathologies, and diagnostic pitfalls on MRI. Skelet Radiol. 2018;47(8):1069–86.

    Google Scholar 

  62. Khan N, McMahon P, Obaid H. Bony morphology of the knee and non-traumatic meniscal tears: is there a role for meniscal impingement? Skelet Radiol. 2014;43(7):955–62.

    Google Scholar 

  63. Krych AJ, Wu IT, Desai VS, Kennedy NI, Littrell LA, Collins MS, et al. Osteomeniscal impact edema (OMIE): description of a distinct MRI finding in displaced flap tears of the medial meniscus, with comparison to posterior root tears. J Knee Surg. 2019.

  64. Bordalo-Rodrigues M, Cavalcanti C, Almeida A, Hernandez A, Camanho G, Cerri G. Osteo-meniscal impingement: MRI findings. Skelet Radiol. 2014;43:1343. https://doi.org/10.1007/s00256-014-1937-z.

    Article  Google Scholar 

  65. Herschmiller TA, Anderson JA, Garrett WE, Taylor DC. The trapped medial meniscus tear: an examination maneuver helps predict arthroscopic findings. Orthop J Sports Med. 2015;3(5):2325967115583954.

    PubMed  PubMed Central  Google Scholar 

  66. Lecas LK, Helms CA, Kosarek FJ, Garret WE. Inferiorly displaced flap tears of the medial meniscus: MR appearance and clinical significance. Am J Roentgenol. 2000;174(1):161–4.

    CAS  Google Scholar 

  67. Skaf AY, Hernandez Filho G, Dirim B, Wangwinyuvirat M, Trudell D, Haghigi P, et al. Pericruciate fat pad of the knee: anatomy and pericruciate fat pad inflammation: cadaveric and clinical study emphasizing MR imaging. Skelet Radiol. 2012;41(12):1591–6.

    Google Scholar 

  68. Huang BK, Campos JC, Michael Peschka PG, Pretterklieber ML, Skaf AY, Chung CB, et al. Injury of the gluteal aponeurotic fascia and proximal iliotibial band: anatomy, pathologic conditions, and MR imaging. RadioGraphics. 2013;33(5):1437–52.

    PubMed  Google Scholar 

  69. Flato R, Passanante GJ, Skalski MR, Patel DB, White EA, Matcuk GR. The iliotibial tract: imaging, anatomy, injuries, and other pathology. Skeletal Radiol. Springer Berlin Heidelberg. 2017;46(5):605–22.

    PubMed  Google Scholar 

  70. Muhle C, Ahn JM, Yeh L, Bergman GA, Boutin RD, Schweitzer M, et al. Iliotibial band friction syndrome: MR imaging findings in 16 patients and MR arthrographic study of six cadaveric knees. Radiology. 1999;212(1):103–10.

    PubMed  CAS  Google Scholar 

  71. Fairclough J, Hayashi K, Toumi H, Lyons K, Bydder G, Phillips N, et al. The functional anatomy of the iliotibial band during flexion and extension of the knee: implications for understanding iliotibial band syndrome. J Anatomy. 39 ed. John Wiley & Sons, Ltd (10.1111). 2006;208(3):309–16.

    Google Scholar 

  72. Renne JW. The iliotibial band friction syndrome. J Bone Joint Surg Am. 1975;57(8):1110–1.

    PubMed  CAS  Google Scholar 

  73. Orava S. Iliotibial tract friction syndrome in athletes--an uncommon exertion syndrome on the lateral side of the knee. Br J Sports Med. 1978;12(2):69–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Strauss EJ, Kim S, Calcei JG, Park D. Iliotibial band syndrome: evaluation and management. J Am Acad Orthop Surg. 2011;19(12):728–36.

    PubMed  Google Scholar 

  75. Vasilevska V, Szeimies U, Stäbler A. Magnetic resonance imaging signs of iliotibial band friction in patients with isolated medial compartment osteoarthritis of the knee. Skelet Radiol. 2009;38(9):871–5.

    Google Scholar 

  76. Lavine R. Iliotibial band friction syndrome. Curr Rev Musculoskelet Med. 2010;3(1–4):18–22.

    PubMed  PubMed Central  Google Scholar 

  77. Noble CA. Iliotibial band friction syndrome in runners. Am J Sports Med. SAGE Publications. 1980;8(4):232–4.

    PubMed  CAS  Google Scholar 

  78. Mansour R, Yoong P, McKean D, Teh JL. The iliotibial band in acute knee trauma: patterns of injury on MR imaging. Skelet Radiol. 2014;43(10):1369–75.

    Google Scholar 

  79. Isusi M, Oleaga L, Campo M, Grande D. MRI findings in iliotibial band friction syndrome: a report of two cases. Radiologia. 2007;49(6):433–5.

    PubMed  CAS  Google Scholar 

  80. Jadhav SP, More SR, Riascos RF, Lemos DF, Swischuk LE. Comprehensive review of the anatomy, function, and imaging of the popliteus and associated pathologic conditions. RadioGraphics. 2014;34(2):496–513.

    PubMed  Google Scholar 

  81. Gaine WJ, Mohammed A. Osteophyte impingement of the popliteus tendon as a cause of lateral knee joint pain. Knee. 2002;9(3):249–52.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent and ethics

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Ashraf, T. & Saifuddin, A. Magnetic resonance imaging of impingement and friction syndromes around the knee. Skeletal Radiol 49, 823–836 (2020). https://doi.org/10.1007/s00256-020-03379-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03379-y

Keywords

Navigation