1932

Abstract

Abstract

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-092719-082622
2020-04-26
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-092719-082622.html?itemId=/content/journals/10.1146/annurev-immunol-092719-082622&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Allis CD, Jenuwein T. 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17:487–500
    [Google Scholar]
  2. 2. 
    Lawrence M, Daujat S, Schneider R 2016. Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32:42–56
    [Google Scholar]
  3. 3. 
    Göndör A, Ohlsson R. 2018. Enhancer functions in three dimensions: beyond the flat world perspective [version 1]. F1000Res 7:681 https://doi.org/10.12688/f1000research.13842.1
    [Crossref] [Google Scholar]
  4. 4. 
    Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS et al. 2015. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 183:134–47
    [Google Scholar]
  5. 5. 
    Wu X, Zhang Y. 2017. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18:517–34
    [Google Scholar]
  6. 6. 
    Bochtler M, Kolano A, Xu GL 2017. DNA demethylation pathways: additional players and regulators. BioEssays 39:1–13
    [Google Scholar]
  7. 7. 
    Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y 2014. Snapshot: histone modifications. Cell 159:458
    [Google Scholar]
  8. 8. 
    Vidal M. 2009. Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression. Int. J. Dev. Biol. 53:355–70
    [Google Scholar]
  9. 9. 
    Arenzana TL, Lianoglou S, Seki A, Eidenschenk C, Cheung T et al. 2018. Tumor suppressor BAP1 is essential for thymic development and proliferative responses of T lymphocytes. Sci. Immunol. 3:eaal1953 https://doi.org/10.1126/sciimmunol.aal1953
    [Crossref] [Google Scholar]
  10. 10. 
    Kitagawa Y, Sakaguchi S. 2017. Molecular control of regulatory T cell development and function. Curr. Opin. Immunol. 49:64–70
    [Google Scholar]
  11. 11. 
    Yui MA, Rothenberg EV. 2014. Developmental gene networks: a triathlon on the course to T cell identity. Nat. Rev. Immunol. 14:529–45
    [Google Scholar]
  12. 12. 
    Carpenter AC, Bosselut R. 2010. Decision checkpoints in the thymus. Nat. Immunol. 11:666–73
    [Google Scholar]
  13. 13. 
    Lee YJ, Jameson SC, Hogquist KA 2011. Alternative memory in the CD8 T cell lineage. Trends Immunol 32:50–56
    [Google Scholar]
  14. 14. 
    Das R, Sant'Angelo DB, Nichols KE 2010. Transcriptional control of invariant NKT cell development. Immunol. Rev. 238:195–215
    [Google Scholar]
  15. 15. 
    Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R et al. 2013. The transcriptional landscape of αβ T cell differentiation. Nat. Immunol. 14:619–32
    [Google Scholar]
  16. 16. 
    Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV 2012. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149:467–82
    [Google Scholar]
  17. 17. 
    Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21
    [Google Scholar]
  18. 18. 
    Lyko F. 2018. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19:81–92
    [Google Scholar]
  19. 19. 
    Panning B, Jaenisch J. 1996. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev 10:1991–2002
    [Google Scholar]
  20. 20. 
    Walsh CP, Chaillet JR, Bestor TH 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20:116–17
    [Google Scholar]
  21. 21. 
    Ji H, Ehrlich LI, Seita J, Murakami K, Doi A et al. 2010. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–42
    [Google Scholar]
  22. 22. 
    Pastor WA, Aravind L, Rao A 2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14:341–56
    [Google Scholar]
  23. 23. 
    Valinluck V, Sowers LC. 2007. Endogenous cytosine damage products alter the site specificity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–50
    [Google Scholar]
  24. 24. 
    He YF, Li BZ, Liu P, Wang Y, Tang Q et al. 2011. Tet-mediated formation of 5-caroxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–7
    [Google Scholar]
  25. 25. 
    Maiti A, Drohat AC. 2011. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implication for active demethylation of CpG sites. J. Biol. Chem. 286:35334–38
    [Google Scholar]
  26. 26. 
    Weber AR, Krawczyk C, Robertson AB, Kusneirczyk A, Vagbo CB et al. 2016. Biochemical reconstitution of TET1-TDG-BER-dependent DNA demethylation reveals a highly coordinated mechanism. Nat. Commun. 7:10806 https://doi.org/10.1038/ncomms10806
    [Crossref] [Google Scholar]
  27. 27. 
    Tsagaratou A, Ajio T, Lio C-WJ, Yue X, Huang Y et al. 2014. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. PNAS 111:E3306–15
    [Google Scholar]
  28. 28. 
    Yoon BH, Kim M, Kim MH, Kim JH, Kim JH et al. 2018. Dynamic transcriptome, DNA methylome and DNA hydroxymethylome networks during T-cell lineage commitment. Mol. Cells 41:953–63
    [Google Scholar]
  29. 29. 
    Li E, Bestor TH, Jaenisch R 1992. Targeted mutation of the DNA methyltransferase gene results in embyronic lethality. Cell 69:915–26
    [Google Scholar]
  30. 30. 
    Okano M, Bell DW, Haber DA, Li E 1999. DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development. Cell 99:247–57
    [Google Scholar]
  31. 31. 
    Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H 2007. De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J. Exp. Med. 204:715–22
    [Google Scholar]
  32. 32. 
    Kramer AC, Kothari A, Wilson WC, Celik H, Nikitas J et al. 2017. Dnmt3a regulates T-cell development and suppresses T-ALL transformation. Leukemia 31:2479–90
    [Google Scholar]
  33. 33. 
    Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S et al. 2001. A critical role for Dnmt1 and DNA methylation in T cell development, survival and function. Immunity 15:763–74
    [Google Scholar]
  34. 34. 
    Hlday RA, Novakova S, Opavska J, Klinkebiel D, Peters SL et al. 2012. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J. Clin. Investig. 122:163–77
    [Google Scholar]
  35. 35. 
    Challen GA, Sun D, Mayle A, Jeong M, Luo M et al. 2014. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15:350–64
    [Google Scholar]
  36. 36. 
    Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK et al. 1999. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. PNAS 96:14412–17
    [Google Scholar]
  37. 37. 
    Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N et al. 1999. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–91
    [Google Scholar]
  38. 38. 
    Erhlich M. 2003. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol. 109:17–28
    [Google Scholar]
  39. 39. 
    Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E 2006. Roles of Dnmt3b in mammalian development a mouse model for the ICF syndrome. Development 133:1183–92
    [Google Scholar]
  40. 40. 
    Lio CJ, Rao A. 2019. TET enzymes and 5hmC in adaptive and innate immune systems. Front. Immunol. 10:210 https://doi.org/10.3389/fimmu.2019.00210
    [Crossref] [Google Scholar]
  41. 41. 
    Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC et al. 2011. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. PNAS 108:14566–71
    [Google Scholar]
  42. 42. 
    Gu TP, Guo F, Yang H, Wu HP, Xu GF et al. 2011. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–10
    [Google Scholar]
  43. 43. 
    Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D et al. 2011. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24
    [Google Scholar]
  44. 44. 
    Ichikawa M, Chen T, Wang X, Yan X, Kim BS et al. 2015. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42:613–26
    [Google Scholar]
  45. 45. 
    Tsagaratou A, Gonzalez-Avalos E, Rautio S, Scott-Browne JP, Togher S et al. 2017. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat. Immunol. 18:45–53
    [Google Scholar]
  46. 46. 
    Insuree PD, Day K, Au C, Raviram R, Zappile P et al. 2018. Stage-specific epigenetic regulation of CD4 expression by coordinated enhancer elements during T cell development. Nat. Commun. 9:3594 https://doi.org/10.1038/s41467-018-05834-w
    [Crossref] [Google Scholar]
  47. 47. 
    Yue X, Lio CJ, Samaniego-Castruita D, Li X, Rao A 2019. Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nat. Commun. 10:2011 https://doi.org/10.1038/s41467-019-09541-y
    [Crossref] [Google Scholar]
  48. 48. 
    Sabari BR, Zhang D, Allis CD, Zhao Y 2017. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18:90–101
    [Google Scholar]
  49. 49. 
    Prakash K, Fournier D. 2018. Evidence for the implication of the histone code in building the genome structure. Biosystems 164:49–59
    [Google Scholar]
  50. 50. 
    Blanc RS, Richard S. 2017. Arginine methylation: the coming of age. Mol. Cell 65:8–24
    [Google Scholar]
  51. 51. 
    Black JC, Van Rechem C, Whetstine JR 2012. Histone lysine methylation dynamics: establishment, regulation and biological impact. Mol. Cell 48:491–507
    [Google Scholar]
  52. 52. 
    Du J, Johnson LM, Jacobsen SE, Patel DJ 2015. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16:519–32
    [Google Scholar]
  53. 53. 
    Harker N, Garefalaki A, Menzel U, Kristaki E, Naito T et al. 2011. Pre-TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development. J. Immunol. 186:6368–77
    [Google Scholar]
  54. 54. 
    He X, He X, Dave VP, Zhang Y, Hua X et al. 2005. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433:826–33
    [Google Scholar]
  55. 55. 
    Sun G, Liu X, Mercado P, Jenkinson SR, Kypriotou M et al. 2005. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6:373–81
    [Google Scholar]
  56. 56. 
    Tanaka H, Naito T, Muroi S, Seo W, Chihara R et al. 2013. Epigenetic Thpok silencing limits the time window to choose CD4+ helper-lineage fate in the thymus. EMBO J 32:1183–94
    [Google Scholar]
  57. 57. 
    Haery L, Thompson RC, Gilmore TD 2015. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 6:184–213
    [Google Scholar]
  58. 58. 
    Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C et al. 2006. Conditional knockout mice reveal distinct functions for the global transcription factors CBP and p300 in T-cell development. Mol. Cell. Biol. 26:789–809
    [Google Scholar]
  59. 59. 
    Krishnamoorthy V, Carr T, de Pooter RF, Emanuelle AO, Gounari F, Kee BL 2015. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway. J. Immunol. 194:3191–200
    [Google Scholar]
  60. 60. 
    Fukuyama T, Kasper LH, Boussouar F, Jeevan T, van Deursen J, Brindle PK 2009. Histone acetyltransferase CBP is vital to demarcate conventional and innate CD8+ T-cell development. Mol. Cell. Biol. 29:3894–904
    [Google Scholar]
  61. 61. 
    Liu Y, Wang L, Han R, Beier UH, Akimova T et al. 2004. Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. Mol. Cell. Biol. 34:3993–4007
    [Google Scholar]
  62. 62. 
    Gupta A, Hunt CR, Pandita RK, Pae J, Komal K et al. 2013. T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice. Mutagenesis 28:263–70
    [Google Scholar]
  63. 63. 
    Newman DM, Voss AK, Thomas T, Allan RS 2017. Essential role for the histone acetyltransferase KAT7 in T cell development, fitness and survival. J. Leuk. Biol. 101:887–92
    [Google Scholar]
  64. 64. 
    Wang Y, Yun C, Gao B, Xu Y, Zhang Y et al. 2017. The lysine acetyltransferase GCN5 is required for iNKT cell development through EGR2 acetylation. Cell Rep 20:600–12
    [Google Scholar]
  65. 65. 
    Ellmeier W, Seiser C. 2018. Histone deacetylase function in CD4+ T cells. Nat. Rev. Immunol. 18:617–34
    [Google Scholar]
  66. 66. 
    Xing S, Li F, Zeng Z, Zhao Y, Yu S et al. 2016. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nat. Immunol. 17:695–703
    [Google Scholar]
  67. 67. 
    Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L et al. 2010. Conditional deletion of HDAC1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J. Immunol. 185:3489–97
    [Google Scholar]
  68. 68. 
    Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM et al. 2013. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood 121:1335–44
    [Google Scholar]
  69. 69. 
    Boucheron N, Tschismarov R, Goschl L, Moser MA, Lagger S et al. 2014. CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat. Immunol. 15:439–48
    [Google Scholar]
  70. 70. 
    Liu Q, Zhang X, Yin C, Chen X, Zhang Z et al. 2017. HDAC4 is expressed on multiple T cell lineages but dispensable for their development and function. Oncotarget 8:17562–72
    [Google Scholar]
  71. 71. 
    Xiao H, Jiao J, Wang L, O'Brien S, Newick K et al. 2016. HDAC5 controls the functions of Foxp3+ T-regulatory and CD8+ T cells. Int. J. Cancer 138:2477–86
    [Google Scholar]
  72. 72. 
    Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S et al. 2008. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol. 28:1688–701
    [Google Scholar]
  73. 73. 
    Woods DM, Woan KV, Cheng F, Sodre AL, Wang D et al. 2017. T cells lacking HDAC11 have increased effector functions and mediate enhanced alloreactivity in a murine model. Blood 130:146–55
    [Google Scholar]
  74. 74. 
    Beier UH, Wang L, Bhatti TR, Liu Y, Han R et al. 2011. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell. Biol. 31:1022–29
    [Google Scholar]
  75. 75. 
    Beier UH, Angelin A, Akimova T, Wang L, Liu Y et al. 2015. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J 29:2315–26
    [Google Scholar]
  76. 76. 
    Summers AR, Fischer MA, Stengel KR, Zhao Y, Kaiser JF et al. 2013. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J. Clin. Investig. 123:3112–23
    [Google Scholar]
  77. 77. 
    Philips RL, Chen MW, McWilliams D, Belmonte PJ, Constans MM, Shapiro VS 2016. HDAC3 is required for the downregulation of RORγt during thymocyte positive selection. J. Immunol. 197:541–54
    [Google Scholar]
  78. 78. 
    Philips RL, Lee JH, Gaonkar K, Chanana P, Chung JY et al. 2019. HDAC3 restrains CD8-lineage genes to maintain a bi-potential state in CD4+CD8+ thymocytes for CD4 lineage commitment. eLife 8:e43821
    [Google Scholar]
  79. 79. 
    Philips RL, McCue SA, Rajcula MJ, Shapiro VS 2019. Cutting Edge: HDAC3 protects double-positive thymocytes from P2X7 receptor-induced cell death. J. Immunol. 202:1033–38
    [Google Scholar]
  80. 80. 
    Thapa P, Das J, McWilliams D, Shapiro M, Sundsbak R et al. 2013. The transcriptional repressor NKAP is required for the development of iNKT cells. Nat. Commun. 4:1582 https://doi.org/10.1038/ncomms2580
    [Crossref] [Google Scholar]
  81. 81. 
    Hsu F-C, Belmonte PJ, Constans MM, Chen MW, McWilliams DC et al. 2015. Histone deacetylase 3 is required for T cell maturation. J. Immunol. 195:1578–90
    [Google Scholar]
  82. 82. 
    Dequiedt F, Kasler H, Fischle W, Kiermer V, Weinstein M et al. 2003. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 18:687–98
    [Google Scholar]
  83. 83. 
    Kasler H, Young BD, Mottet D, Lim HW, Collins AM et al. 2011. Histone deacetylase 7 regulates cell survival and TCR signaling in CD4/CD8 double-positive thymocytes. J. Immunol. 186:4782–93
    [Google Scholar]
  84. 84. 
    Kasler HG, Lim HW, Mottet D, Collins AM, Lee IS, Verdin E 2012. Nuclear export of histone deacetylase 7 during thymic selection is required for immune self-tolerance. EMBO J 31:4453–65
    [Google Scholar]
  85. 85. 
    Kasler HG, Lee IS, Lim HW, Verdin E 2018. Histone deacetylase 7 mediates tissue-specific autoimmunity via control of innate effector function in invariant natural killer T cells. eLife 7:e32109 https://doi.org/10.7554/elife.32109
    [Crossref] [Google Scholar]
  86. 86. 
    Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE et al. 2010. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA non-homologous end joining. Nat. Struct. Mol. Biol. 17:1144–51
    [Google Scholar]
  87. 87. 
    Steinke FC, Yu S, Zhou X, He B, Yang W-M et al. 2014. TCF-1 and LEF-1 act upstream of ThPOK to promote the CD4+ T cell fate and interact with Runx3 to silence CD4 in CD8+ T cells. Nat. Immunol. 15:646–56
    [Google Scholar]
  88. 88. 
    Verbeek S, Izon DJ, Hofhuis F, Robanus-Maandag E, te Riele H et al. 1995. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374:70–74
    [Google Scholar]
  89. 89. 
    Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R 1998. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20
    [Google Scholar]
  90. 90. 
    Weber BN, Chi AW, Chavez A, Yashiro-Ohtani Y, Yang Q et al. 2011. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476:63–68
    [Google Scholar]
  91. 91. 
    Germar K, Dose M, Konstantinou T, Zhang J, Wang H et al. 2011. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. PNAS 108:20060–65
    [Google Scholar]
  92. 92. 
    Johnson JL, Georgakilas T, Petrovic J, Kurachi M, Cai S et al. 2018. Lineage-determining transcription factor TCF-1 initiates the epigenetic identity of T cells. Immunity 48:243–57
    [Google Scholar]
  93. 93. 
    van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YYJ, Beekman JM et al. 2010. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115:965–74
    [Google Scholar]
  94. 94. 
    Barnes CE, English DM, Cowley SM 2019. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 63:97–107
    [Google Scholar]
  95. 95. 
    Zhao S, Zhang X, Li H 2018. Beyond histone acetylation-writing and erasing histone acylations. Curr. Opin. Struct. Biol. 53:169–77
    [Google Scholar]
  96. 96. 
    Flynn EM, Huang OW, Poy F, Oppikofer M, Bellon SF et al. 2015. A subset of human bromodomains recognizes butyryllysine and crotonyllysine histone peptide modifications. Structure 23:1801–14
    [Google Scholar]
  97. 97. 
    Wang Y, Guo YR, Liu K, Yin Z, Liu R et al. 2017. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature 552:273–77
    [Google Scholar]
  98. 98. 
    Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H et al. 2015. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58:203–15 Erratum. 2018. Mol. Cell 69:533
    [Google Scholar]
  99. 99. 
    Kebede AF, Nieborak A, Shahidian LZ, Le Gras S, Richter F et al. 2017. Histone propionylation is a mark of active chromatin. Nat. Struct. Mol. Biol. 24:1048–56
    [Google Scholar]
  100. 100. 
    Tan M, Peng C, Anderson KA, Chhoy P, Xie Z et al. 2014. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–17
    [Google Scholar]
  101. 101. 
    Kaczmarska Z, Ortega E, Goudarzi A, Huang H, Kim S et al. 2017. Structure of p300 in a complex with acyl-CoA variants. Nat. Chem. Biol. 13:21–29
    [Google Scholar]
  102. 102. 
    Huang H, Tang S, Ji M, Tang Z, Shimada M et al. 2018. p300-mediated lysine 2-hydroxyisobutyrylation regulates glycolysis. Mol. Cell 70:663–78
    [Google Scholar]
  103. 103. 
    Liu X, Wei W, Liu Y, Yang X, Wu J et al. 2017. MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discov 3:17016 https://doi.org/10.1038/celldisc.2017.16
    [Crossref] [Google Scholar]
  104. 104. 
    Chisolm DA, Weinmann AS. 2018. Connections between metabolism and epigenetics in programming cellular differentiation. Annu. Rev. Immunol. 36:221–46
    [Google Scholar]
  105. 105. 
    Xie Z, Zhang D, Chung D, Tang Z, Huang H et al. 2016. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62:194–206
    [Google Scholar]
  106. 106. 
    Conway E, Healy E, Bracken AP 2015. PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr. Opin. Cell Biol. 37:42–48
    [Google Scholar]
  107. 107. 
    Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nunez J et al. 2012. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 11:649–62
    [Google Scholar]
  108. 108. 
    Su IH, Dobenecker MW, Dickinson E, Oser M, Basavaraj A et al. 2005. Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121:425–36
    [Google Scholar]
  109. 109. 
    Vasanthakumar A, Xu D, Lun AT, Kueh AJ, van Gisbergen KP et al. 2017. A non-canonical function of Ezh2 preserves immune homeostasis. EMBO Rep 18:619–31
    [Google Scholar]
  110. 110. 
    Yang W, Ernst P. 2017. SET/MLL family proteins in hematopoiesis and leukemia. Int. J. Hematol. 105:7–16
    [Google Scholar]
  111. 111. 
    Shinsky SA, Monteith KE, Viggiano S, Cosgrove MS 2015. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. J. Biol. Chem. 290:6361–75
    [Google Scholar]
  112. 112. 
    Cao W, Guo J, Wen X, Miao L, Lin F et al. 2016. CXXC finger protein 1 is critical for T-cell intrathymic development through regulating H3K4 trimethylation. Nat. Commun. 7:11687 https://doi.org/10.1038/ncomms11687
    [Crossref] [Google Scholar]
  113. 113. 
    Mahadevan J, Skalnik DG. 2016. Efficient differentiation of murine embryonic stem cells requires the binding of CXXC finger protein 1 to DNA or methylated histone H3-Lys4. Gene 594:1–9
    [Google Scholar]
  114. 114. 
    Bradley SP, Kaminski DA, Peters AH, Jenuwein T, Stavnezer J 2006. The histone methyltransferase Suv39h1 increases class switch recombination specifically to IgA. J. Immunol. 177:1179–88
    [Google Scholar]
  115. 115. 
    Thomas LR, Miyashita H, Cobb RM, Pierce S, Tachibana M et al. 2008. Functional analysis of histone methyltransferase G9a in B and T lymphocytes. J. Immunol. 181:485–93
    [Google Scholar]
  116. 116. 
    Martin FJ, Xu Y, Lohmann F, Ciccone DN, Nicholson TB et al. 2015. KMT1E-mediated chromatin modifications at the FcγRIIb promoter regulate thymocyte development. Genes Immun 16:162–69
    [Google Scholar]
  117. 117. 
    Takikita S, Muro R, Takai T, Otsubo T, Kawamura YI et al. 2016. A histone methyltransferase ESET is critical for T cell development. J. Immunol. 197:2269–79
    [Google Scholar]
  118. 118. 
    Nowak RP, Tumber A, Johansson C, Che KH, Brennan P et al. 2016. Advances and challenges in understanding histone demethylase biology. Curr. Opin. Chem. Biol. 33:151–59
    [Google Scholar]
  119. 119. 
    Kerenyi MA, Shao Z, Hsu YJ, Guo G, Luc S et al. 2013. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. eLife 2:e00633 https://doi.org/10.7554/elife.00633
    [Crossref] [Google Scholar]
  120. 120. 
    Stewart MH, Albert M, Sroczynska P, Cruickshank VA, Guo Y et al. 2015. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal in mice. Blood 125:2075–78
    [Google Scholar]
  121. 121. 
    Manna A, Kim JK, Bauge C, Cam M, Zhao Y et al. 2015. Histone H3 Lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat. Commun. 6:8152 https://doi.org/10.1038/ncomms9152
    [Crossref] [Google Scholar]
  122. 122. 
    Bosselut R. 2019. Control of intra-thymic αβ T cell selection and maturation by H3K27 methylation and demethylation. Front. Immunol. 10:688 https://doi.org/10.3389/fimmu.2019.00688
    [Crossref] [Google Scholar]
  123. 123. 
    Northrup D, Yagi R, Cui K, Proctor WR, Wang C et al. 2017. Histone demethylases UTX and JMJD3 are required for NKT cell development in mice. Cell Biosci 7:25 https://doi.org/10.1186/s13578-017-0152-8
    [Crossref] [Google Scholar]
  124. 124. 
    Beyaz S, Kim JH, Pinello L, Xifaras ME, Hu Y et al. 2017. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat. Immunol. 18:184–95
    [Google Scholar]
  125. 125. 
    Vidal M, Starowicz K. 2017. Polycomb complexes PRC1 and their function in hematopoiesis. Exp. Hematol. 48:12–31
    [Google Scholar]
  126. 126. 
    del Mar Lorente M, Marcos-Gutierrez C, Perez C, Schooriemmer J, Ramirez A et al. 2000. Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice. Development 127:5093–100
    [Google Scholar]
  127. 127. 
    Cales C, Roman-Trufero M, Pavon L, Serrano I, Melgar T et al. 2008. Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol. Cell. Biol. 28:1018–28
    [Google Scholar]
  128. 128. 
    Ikawa T, Masuda K, Endo TA, Endo M, Isono K et al. 2016. Conversion of T cells to B cells by inactivation of polycomb-mediated epigenetic suppression of the B-lineage program. Genes Dev 30:2475–85
    [Google Scholar]
  129. 129. 
    Belle JI, Nijnik A. 2014. H2A-DEUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int. J. Biochem. Cell Biol. 50:161–74
    [Google Scholar]
  130. 130. 
    Zhang Y, Liu RB, Cao Q, Fan KQ, Huang LJ et al. 2019. USP16-mediated deubiquitination of calcineurin A controls peripheral T cell maintenance. J. Clin. Investig. 130:2856–71
    [Google Scholar]
  131. 131. 
    Fan Y, Mao R, Yu Y, Liu S, Shi Z et al. 2014. USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J. Exp. Med. 211:313–28
    [Google Scholar]
  132. 132. 
    Forster M, Boora RK, Petrov JC, Fodil N, Albanese I et al. 2017. A role for the histone H2A deubiquitinase MYSM1 in the maintenance of CD8+ T cells. Immunology 151:110–21
    [Google Scholar]
  133. 133. 
    Gatzka M, Tasdogan A, Hainzi A, Allies G, Maity P et al. 2015. Interplay of H2A deubiquitinase 2A-DUB/Mysm1 and the p19(ARF)/p53 axis in hematopoiesis, early T-cell development and tissue differentiation. Cell Death Diff 22:1451–62
    [Google Scholar]
  134. 134. 
    Huang XF, Nandajumar V, Tumurkhuu G, Wang T, Jiang X et al. 2016. Mysm1 is required for interferon regulatory factor expression in maintaining HSC quiescence and thymocyte development. Cell Death Dis 7:e2260 https://doi.org/10.1038/cddis.2016.162
    [Crossref] [Google Scholar]
  135. 135. 
    Kim J, Lee J, Yadav N, Wu Q, Carter C et al. 2004. Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J. Biol. Chem. 279:25339–44
    [Google Scholar]
  136. 136. 
    Kim D, Lee J, Cheng D, Li J, Carter C et al. 2010. Enzymatic activity is required for the in vivo functions of CARM1. J. Biol. Chem. 285:1147–52
    [Google Scholar]
  137. 137. 
    Li J, Zhao Z, Carter C, Ehrlich LI, Bedford MT, Richie ER 2013. Coactivator-associated arginine methyltransferase 1 regulates fetal hematopoiesis and thymocyte development. J. Immunol. 190:597–604
    [Google Scholar]
  138. 138. 
    Liu F, Cheng G, Hamard PJ, Greenblatt S, Wang L et al. 2015. Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J. Clin. Investig. 125:3532–44
    [Google Scholar]
  139. 139. 
    Inoue H, Okamoto H, Terashima A, Nitta T, Muro R et al. 2018. Arginine methylation controls the strength of γc-family cytokine signaling in T cell maintenance. Nat. Immunol. 19:1265–76
    [Google Scholar]
  140. 140. 
    Wurster AL, Pazin MJ. 2012. ATP-dependent chromatin remodelling in T cells. Biochem. Cell Biol. 90:1–13
    [Google Scholar]
  141. 141. 
    Dege C, Hagman J. 2014. Mi-2/NuRD chromatin remodeling complexes regulate B and T-lymphocyte development and function. Immunol. Rev. 261:126–40
    [Google Scholar]
  142. 142. 
    Shapiro MJ, Shapiro VS. 2011. Transcriptional repressors, corepressors and chromatin modifying enzymes in T cell development. Cytokine 53:271–81
    [Google Scholar]
  143. 143. 
    Hu G, Cui K, Fang D, Hirose S, Wang S et al. 2018. Transformation of accessible chromatin and 3D nucleome underlies lineage commitment in early T cells. Immunity 48:227–42
    [Google Scholar]
  144. 144. 
    Isoda T, Moore AJ, He Z, Chandra V, Aida M et al. 2017. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171:103–19
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-092719-082622
Loading
/content/journals/10.1146/annurev-immunol-092719-082622
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error