Skip to main content

Advertisement

Log in

Thiamine Deficiency Modulates p38MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Thiamine deficiency (TD) produces severe neurodegenerative lesions. Studies have suggested that primary neurodegenerative events are associated with both oxidative stress and inflammation. Very little is known about the downstream effects on intracellular signaling pathways involved in neuronal death. The primary aim of this work was to evaluate the modulation of p38MAPK and the expression of heme oxygenase 1 (HO-1) in the central nervous system (CNS). Behavioral, metabolic, and morphological parameters were assessed. Mice were separated into six groups: control (Cont), TD with pyrithiamine (Ptd), TD with pyrithiamine and Trolox (Ptd + Tr), TD with pyrithiamine and dimethyl sulfoxide (Ptd + Dmso), Trolox (Tr) and DMSO (Dmso) control groups and treated for 9 days. Control groups received standard feed (AIN-93M), while TD groups received thiamine deficient feed (AIN-93DT). All the groups were subjected to behavioral tests, and CNS samples were collected for cell viability, histopathology and western blot analyses. The Ptd group showed a reduction in weight gain and feed intake, as well as a reduction in locomotor, grooming, and motor coordination activities. Also, Ptd group showed a robust increase in p38MAPK phosphorylation and mild HO-1 expression in the cerebral cortex and thalamus. The Ptd group showed a decreased cell viability, hemorrhage, spongiosis, and astrocytic swelling in the thalamus. Groups treated with Trolox and DMSO displayed diminished p38MAPK phosphorylation in both the structures, as well as attenuated thalamic lesions and behavioral activities. These data suggest that p38MAPK and HO-1 are involved in the TD-induced neurodegeneration in vivo, possibly modulated by oxidative stress and neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butterworth RF (2009) Thiamine deficiency-related brain dysfunction in chronic liver failure. Metab Brain Dis 24:189–196. https://doi.org/10.1007/s11011-008-9129-y

    Article  CAS  PubMed  Google Scholar 

  2. Haas RH (1988) Thiamin and the brain. Annu Rev Nutr 8:483–515. https://doi.org/10.1146/annurev.nu.08.070188.002411

    Article  CAS  PubMed  Google Scholar 

  3. Vetreno RP, Ramos RL, Anzalone S, Savage LM (2012) Brain and behavioral pathology in an animal model of Wernicke’s encephalopathy and Wernicke-Korsakoff Syndrome. Brain Res 1436:178–192. https://doi.org/10.1016/j.brainres.2011.11.038

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki K, Yamada K, Fukuhara Y, Tsuji A, Shibata K (2017) High-dose thiamine prevents brain lesions and prolongs survival of Slc19a3 -deficient mice. PLoS ONE 12:e0180279. https://doi.org/10.1371/journal.pone.0180279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Apley MD (2015) Consideration of evidence for therapeutic interventions in bovine polioencephalomalacia. Vet Clin North Am 31:151–161. https://doi.org/10.1016/j.cvfa.2014.11.005

    Article  Google Scholar 

  6. Abdou E, Hazell AS (2015) Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 40:353–361. https://doi.org/10.1007/s11064-014-1430-z

    Article  CAS  PubMed  Google Scholar 

  7. Butterworth RF, Kril JJ, Harper CG (1993) Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol Clin Exp Res 17:1084–1088. https://doi.org/10.1111/j.1530-0277.1993.tb05668.x

    Article  CAS  PubMed  Google Scholar 

  8. Attias J, Raveh E, Aizer-Dannon A, Bloch-Mimouni A, Fattal-Valevski A (2012) Auditory system dysfunction due to infantile thiamine deficiency: long-term auditory sequelae. Audiol Neurotol 17:309–320. https://doi.org/10.1159/000339356

    Article  CAS  Google Scholar 

  9. Pitkin SR, Savage LM (2004) Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult. Behav Brain Res 148:93–105. https://doi.org/10.1016/S0166-4328(03)00208-0

    Article  CAS  PubMed  Google Scholar 

  10. Chaves RAD, do Couto TT, Valadares K, de O, Stringhini MLF (2007) Deficiências nutricionais pós-cirurgia bariátrica em adultos com obesidade mórbida. Rev Medica Minas Gerais 17:121–128

    Google Scholar 

  11. Torezan EFG (2013) Revisão das principais deficiências de micronutrientes no pós-operatório do Bypass Gástrico em Y de Roux. Int J Nutrol 6:37–42

    Article  Google Scholar 

  12. Kumar N (2017) Nutrients and Neurology. Continuum (N Y) 23:822–861. https://doi.org/10.1212/01.CON.0000520630.69195.90

    Article  Google Scholar 

  13. Sant’Ana FJF, Barros CSL (2010) Polioencephalomalacia in ruminants in Brazil. Braz J Vet Pathol 3:70–79

    Google Scholar 

  14. Miller AD, Zachary JF (2018) Sistema Nervoso. In: Zachary JF (ed) Bases da Patologia em Veterinária, 6th edn. Elsevier, Rio de Janeiro, pp 805–907

    Google Scholar 

  15. Nardone R, Höller Y, Storti M, Christova M, Tezzon F, Golaszewski S, Trinka E, Brigo F (2013) Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal. Sci World J.https://doi.org/10.1155/2013/309143

    Article  Google Scholar 

  16. Evans CA, Carlosn WE, Green RG (1942) The pathology of chastek paralysis in foxes: a counterpart of Wernicke’s hemorrhagic pollioencephalitis of man. Am J Pathol 18:79–91

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar N (2010) Neurologic presentations of nutritional deficiencies. Neurol Clin 28:107–170. https://doi.org/10.1016/j.ncl.2009.09.006

    Article  PubMed  Google Scholar 

  18. Victor M (1971) Deficiency diseases of the nervous system secondary to alcoholism. Postgrad Med 50:75–79. https://doi.org/10.1080/00325481.1971.11697591

    Article  CAS  PubMed  Google Scholar 

  19. Kril JJ (1996) Neuropathology of thiamine deficiency disorders. Metab Brain Dis 11:9–17

    Article  CAS  Google Scholar 

  20. Cunha P, Badial P, Cagnini D, Oliveira-Filho J, Moares L, Takahira R, Amorim R, Borges A (2011) Polioencefalomalacia experimental em bovinos induzida por toxicose por enxofre. Pesqui Vet Bras 31:41–52

    Article  Google Scholar 

  21. Liu D, Ke Z, Luo J (2017) Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Mol Neurobiol 54:5440–5448. https://doi.org/10.1007/s12035-016-0079-9

    Article  CAS  PubMed  Google Scholar 

  22. Bâ A (2017) Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 22:741–752. https://doi.org/10.1007/s10495-017-1372-4

    Article  CAS  PubMed  Google Scholar 

  23. Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377. https://doi.org/10.1016/j.pharmthera.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  24. Xu B, Xu Z-F, Deng Y (2010) Protective effects of MK-801 on manganese-induced glutamate metabolism disorder in rat striatum. Exp Toxicol Pathol 62:381–390. https://doi.org/10.1016/j.etp.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  25. Roth J (2009) Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. NeuroMol Med 11:281–296. https://doi.org/10.1007/s12017-009-8088-8

    Article  CAS  Google Scholar 

  26. Chen J, Li C, Pei D-S, Han D, Liu X-M, Jiang H-X, Wang X-T, Guan Q-H, Wen X-R, Hou X-Y, Zhang G-Y (2009) GluR6-containing KA receptor mediates the activation of p38 MAP kinase in rat hippocampal CA1 region during brain ischemia injury. Hippocampus 19:79–89. https://doi.org/10.1002/hipo.20479

    Article  CAS  PubMed  Google Scholar 

  27. Rama Rao KV, Jayakumar AR, Reddy PVB, Tong X, Curtis KM, Norenberg MD (2010) Aquaporin-4 in manganese-treated cultured astrocytes. Glia 58:1490–1499. https://doi.org/10.1002/glia.21023

    Article  Google Scholar 

  28. Aouadi M, Binetruy B, Caron L, Le Marchand-Brustel Y, Bost F (2006) Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimie 88:1091–1098. https://doi.org/10.1016/j.biochi.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  29. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183. https://doi.org/10.1038/nrn1346

    Article  CAS  PubMed  Google Scholar 

  30. Subramaniam S, Unsicker K (2006) Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138:1055–1065. https://doi.org/10.1016/j.neuroscience.2005.12.013

    Article  CAS  PubMed  Google Scholar 

  31. Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206:1107–1115. https://doi.org/10.1242/jeb.00220

    Article  CAS  PubMed  Google Scholar 

  32. Waetzig V, Herdegen T (2004) Neurodegenerative and physiological actions of c-Jun N-terminal kinases in the mammalian brain. Neurosci Lett 361:64–67. https://doi.org/10.1016/j.neulet.2004.02.041

    Article  CAS  PubMed  Google Scholar 

  33. Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A (2019) Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: a focus on the protective roles of heme oxygenase (HO)-1. Front Physiol.https://doi.org/10.3389/fphys.2019.00070

    Article  PubMed  PubMed Central  Google Scholar 

  34. Keyse SM, Tyrrell RM (1989) Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci 86:99–103. https://doi.org/10.1073/pnas.86.1.99

    Article  CAS  PubMed  Google Scholar 

  35. Alam J, Igarashi K, Immenschuh S, Shibahara S, Tyrrell RM (2004) Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase. Antioxid Redox Signal 6:924–33. https://doi.org/10.1089/ars.2004.6.924

    Article  CAS  PubMed  Google Scholar 

  36. Foresti R, Hoque M, Bains S, Green CJ, Motterlini R (2003) Haem and nitric oxide: synergism in the modulation of the endothelial haem oxygenase-1 pathway. Biochem J 372:381–390. https://doi.org/10.1042/BJ20021516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barañano DE, Snyder SH (2001) Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci USA 98:10996–11002. https://doi.org/10.1073/pnas.191351298

    Article  PubMed  Google Scholar 

  38. Chen J (2014) Heme oxygenase in neuroprotection: from mechanisms to therapeutic implications. Rev Neurosci 25:269–280. https://doi.org/10.1515/revneuro-2013-0046

    Article  CAS  PubMed  Google Scholar 

  39. Calabrese V, Scapagnini G, Ravagna A, Fariello RG, Giuffrida Stella AM, Abraham NG (2002) Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance. J Neurosci Res 68:65–75. https://doi.org/10.1002/jnr.10177

    Article  CAS  PubMed  Google Scholar 

  40. Scapagnini G, D’Agata V, Calabrese V, Pascale A, Colombrita C, Alkon D, Cavallaro S (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res 954:51–59. https://doi.org/10.1016/s0006-8993(02)03338-3

    Article  CAS  PubMed  Google Scholar 

  41. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354. https://doi.org/10.1146/annurev.pharmtox.010909.105600

    Article  CAS  PubMed  Google Scholar 

  42. Loboda A, Jozkowicz A, Dulak J (2015) HO-1/CO system in tumor growth, angiogenesis and metabolism—targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 74:11–22. https://doi.org/10.1016/j.vph.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  43. Nitti M, Piras S, Brondolo L, Marinari U, Pronzato M, Furfaro A (2018) Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration? Int J Mol Sci 19:2260. https://doi.org/10.3390/ijms19082260

    Article  CAS  PubMed Central  Google Scholar 

  44. Calingasan NY, Gibson GE (2000) Dietary restriction attenuates the neuronal loss, induction of heme oxygenase-1 and blood–brain barrier breakdown induced by impaired oxidative metabolism. Brain Res 885:62–69. https://doi.org/10.1016/S0006-8993(00)02933-4

    Article  CAS  PubMed  Google Scholar 

  45. Calingasan NY, Chun WJ, Park LCH, Uchida K, Gibson GE (1999) Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol 58:946–958. https://doi.org/10.1097/00005072-199909000-00005

    Article  CAS  PubMed  Google Scholar 

  46. Ke Z-J, Degiorgio LA, Volpe BT, Gibson GE (2003) Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol 62:195–207. https://doi.org/10.1093/jnen/62.2.195

    Article  CAS  PubMed  Google Scholar 

  47. Wu T-W, Hashimoto N, Au J-X, Wu J, Mickle DAG, Carey D (1991) Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury. Hepatology 13:575–580. https://doi.org/10.1002/hep.1840130328

    Article  CAS  PubMed  Google Scholar 

  48. Albertini R, Abuja PM (1999) Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic Res 30:181–188. https://doi.org/10.1080/10715769900300201

    Article  CAS  PubMed  Google Scholar 

  49. Wu T-W, Hashimoto N, Wu J, Carey D, Li R-K, Mickle DAG, Weisel RD (1990) The cytoprotective effect of Trolox demonstrated with three types of human cells. Biochem Cell Biol 68:1189–1194. https://doi.org/10.1139/o90-176

    Article  CAS  PubMed  Google Scholar 

  50. Sagach VF, Scrosati M, Fielding J, Rossoni G, Galli C, Visioli F (2002) The water-soluble vitamin E analogue Trolox protects against ischaemia/reperfusion damage in vitro and ex vivo. A comparison with vitamin E. Pharmacol Res 45:435–439. https://doi.org/10.1006/phrs.2002.0993

    Article  CAS  PubMed  Google Scholar 

  51. Jacob SW, de la Torre JC (2009) Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacol Rep 61:225–235. https://doi.org/10.1016/S1734-1140(09)70026-X

    Article  CAS  PubMed  Google Scholar 

  52. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65:1035–1041. https://doi.org/10.1016/S0006-2952(03)00002-9

    Article  CAS  Google Scholar 

  53. Brayton CF (1986) Dimethyl sulfoxide (DMSO): a review. Cornell Vet 76:61–90

    CAS  PubMed  Google Scholar 

  54. Blythe LL, Craig AM, Christensen JM, Appell LH, Slizeski ML (1986) Pharmacokinetic disposition of dimethyl sulfoxide administered intravenously to horses. Am J Vet Res 47:1739–1743

    CAS  PubMed  Google Scholar 

  55. Cordova FM, Aguiar AS, Peres TV, Lopes MW, Goncalves FM, Remor AP, Lopes SC, Pilati C, Latini AS, Prediger RD, Erikson KM, Aschner M, Leal RB (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS ONE 7:e33057. https://doi.org/10.1371/journal.pone.0033057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, Lopes SC, Pilati C, Prediger RDS, Farina M, Erikson KM, Aschner M, Leal RB (2013) Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 87:1231–1244. https://doi.org/10.1007/s00204-013-1017-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hazell AS, Butterworth RF (2009) Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol 44:141–147. https://doi.org/10.1093/alcalc/agn120

    Article  CAS  PubMed  Google Scholar 

  58. Zhang SX, Weilersbacher GS, Henderson SW, Corso T, Olney JW, Langlais PJ (1995) Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. J Neuropathol Exp Neurol 54:255–267. https://doi.org/10.1097/00005072-199503000-00012

    Article  CAS  PubMed  Google Scholar 

  59. Langlais PJ (1995) Pathogenesis of diencephalic lesions in an experimental model of Wernicke’s encephalopathy. Metab Brain Dis 10:31–44. https://doi.org/10.1007/BF01991781

    Article  CAS  PubMed  Google Scholar 

  60. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J Nutr 123:1939–1951. https://doi.org/10.1093/jn/123.11.1939

    Article  CAS  PubMed  Google Scholar 

  61. Calingasan N, Gandy S, Baker H, Sheu KF, Smith JD, Lamb BT, Gearhart JD, Buxbaum JD, Harper C, Selkoe DJ, Price DL, Sisodia SS, Gibson GE (1996) Novel neuritic clusters with accumulations of amyloid precursor protein and amyloid precursor-like protein 2 immunoreactivity in brain regions damaged by thiamine. Am J Pathol 149:1063–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cordova FM, Rodrigues ALS, Giacomelli MBO, Oliveira CS, Posser T, Dunkley PR, Leal RB (2004) Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res 998:65–72. https://doi.org/10.1016/j.brainres.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  63. Cavas M, Beltrán D, Navarro JF (2005) Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Toxicol Lett 157:221–232. https://doi.org/10.1016/j.toxlet.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  64. Pereira LM, Aguiar HQ, da Rodrigues S, Moraes SDC, Medeiros JO, de CN R, de Cordova CAS, de Cordova FM (2017) Amprolium-induced thiamine deficiency in mice: evaluation of a practical model by oral administration. Acta Vet Bras 11:164–174. https://doi.org/10.21708/avb.2017.11.0.7101

    Article  Google Scholar 

  65. Moraes JO, Rodrigues SDC, Pereira LM, Medeiros R, dede CNCordova CAS, de Cordova FM (2018) Amprolium exposure alters mice behavior and metabolism in vivo. Anim Model Exp Med 1:272–281. https://doi.org/10.1002/ame2.12040

    Article  Google Scholar 

  66. Aguiar AS, Araújo AL, Da-Cunha TR, Speck AE, Ignácio ZM, De-Mello N, Prediger RDS (2009) Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull 79:452–457. https://doi.org/10.1016/j.brainresbull.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  67. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356. https://doi.org/10.1016/0003-2697(77)90043-4

    Article  CAS  Google Scholar 

  68. Leal RB, Cordova FM, Herd L, Bobrovskaya L, Dunkley PR (2002) Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol 178:44–51. https://doi.org/10.1006/taap.2001.9320

    Article  CAS  PubMed  Google Scholar 

  69. Cordova CAS, Locatelli C, Assunção LS, Mattei B, Mascarello A, Winter E, Nunes RJ, Yunes RA, Creczynski-Pasa TB (2011) Octyl and dodecyl gallates induce oxidative stress and apoptosis in a melanoma cell line. Toxicol Vitr 25:2025–2034. https://doi.org/10.1016/j.tiv.2011.08.003

    Article  CAS  Google Scholar 

  70. Posser T, de Aguiar CNM, Garcez R, Rossi F, Oliveira C, Trentin A, Moura Neto V, Leal R (2007) Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38MAPK and JNK1/2 but not of ERK1/2. Arch Toxicol 81:407–414. https://doi.org/10.1007/s00204-007-0177-6

    Article  CAS  PubMed  Google Scholar 

  71. Sheline CT, Wei L (2006) Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience 140:235–246. https://doi.org/10.1016/j.neuroscience.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  72. Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, Zhao H (2008) The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem 105:943–955. https://doi.org/10.1111/j.1471-4159.2008.05218.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tolosa EMC de, Rodrigues CJ, Behmer OA, Neto AG de F (2003) Manual de Técnicas para Histologia Normal e Patológica, 2nd edn. Manole, Barueri

    Google Scholar 

  74. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  75. Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recover 6:75–86. https://doi.org/10.1023/A:1008212000208

    Article  CAS  Google Scholar 

  76. Anjaneya A, Singh KP, Cherian S, Saminathan M, Singh R, Ramakrishnan MA, Maan S, Maan NS, Hemadri D, Rao PP, Putty K, Krishnajyothi Y, Mertens PP (2018) Comparative neuropathology of major indian bluetongue virus serotypes in a neonatal BALB/c mouse model. J Comp Pathol 162:18–28. https://doi.org/10.1016/j.jcpa.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  77. Holland T, Holland C (2011) Analysis of unbiased histopathology data from rodent toxicity studies (or, are these groups different enough to ascribe it to treatment?). Toxicol Pathol 39:569–575. https://doi.org/10.1177/0192623311406289

    Article  PubMed  Google Scholar 

  78. Crissman JW, Goodman DG, Hildebrandt PK, Maronpot RR, Prater DA, Riley JH, Seaman WJ, Thake DC (2004) Best practices guideline: toxicologic histopathology. Toxicol Pathol 32:126–131. https://doi.org/10.1080/01926230490268756

    Article  CAS  PubMed  Google Scholar 

  79. Manzetti S, Zhang J, Van Der Spoel D (2014) Thiamin function, metabolism, uptake, and transport. Biochemistry 53:821–835. https://doi.org/10.1021/bi401618y

    Article  CAS  PubMed  Google Scholar 

  80. Chornyy S, Parkhomenko J, Chorna N (2007) Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells. Acta Biochim Pol 54:315–322

    Article  CAS  Google Scholar 

  81. Wang X, Wang B, Fan Z, Shi X, Ke Z-J, Luo J (2007) Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience 144:1045–1056. https://doi.org/10.1016/j.neuroscience.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  82. Liu M, Alimov AP, Wang H, Frank JA, Katz W, Xu M, Ke Z-J, Luo J (2014) Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience 267:102–113. https://doi.org/10.1016/j.neuroscience.2014.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bâ A (2012) Effects of thiamine deficiency on food intake and body weight increment in adult female and growing rats. Behav Pharmacol 23:575–581. https://doi.org/10.1097/FBP.0b013e32835724a1

    Article  CAS  PubMed  Google Scholar 

  84. Li W, Ji M, Lin Y, Miao Y, Chen S, Li H (2018) DEPP/DEPP1/C10ORF10 regulates hepatic glucose and fat metabolism partly via ROS-induced FGF21. FASEB J.https://doi.org/10.1096/fj.201800357R

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kabel AM, Alzahrani AA, Bawazir NM, Khawtani RO, Arab HH (2018) Targeting the proinflammatory cytokines, oxidative stress, apoptosis and TGF-β1/STAT-3 signaling by irbesartan to ameliorate doxorubicin-induced hepatotoxicity. J Infect Chemother.https://doi.org/10.1016/j.jiac.2018.03.010

    Article  PubMed  Google Scholar 

  86. Dangarembizi R, Erlwanger KH, Rummel C, Roth J, Madziva MT, Harden LM (2018) Brewer’s yeast is a potent inducer of fever, sickness behavior and inflammation within the brain. Brain Behav Immun 68:211–223. https://doi.org/10.1016/j.bbi.2017.10.019

    Article  CAS  PubMed  Google Scholar 

  87. Le Thuc O, Stobbe K, Cansell C, Nahon J-L, Blondeau N, Rovère C (2017) Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol (Lausanne) 8:197. https://doi.org/10.3389/fendo.2017.00197

    Article  Google Scholar 

  88. Ferreira-Vieira TH, Freitas-Silva DM de, Ribeiro AF, Pereira SRC, Ribeiro ÂM (2016) Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring. Neurosci Lett 617:182–187. https://doi.org/10.1016/j.neulet.2016.01.060

    Article  CAS  PubMed  Google Scholar 

  89. Carvalho FM, Pereira SRC, Pires RGW, Ferraz VP, Romano-Silva MA, Oliveira-Silva IF, Ribeiro AM (2006) Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs spatial memory performance in a water maze test. Pharmacol Biochem Behav 83:481–489. https://doi.org/10.1016/j.pbb.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  90. Bowyer JF, Tranter KM, Sarkar S, Hanig JP (2018) Microglial activation and vascular responses that are associated with early thalamic neurodegeneration resulting from thiamine deficiency. Neurotoxicology 65:98–110. https://doi.org/10.1016/j.neuro.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  91. Colucci M, Maione F, Bonito MC, Piscopo A, Di Giannuario A, Pieretti S (2008) New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation. Pharmacol Res 57:419–425. https://doi.org/10.1016/j.phrs.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  92. Ichinohe N, Mori F, Shoumura K (2000) A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res 880:191–197. https://doi.org/10.1016/S0006-8993(00)02744-X

    Article  CAS  PubMed  Google Scholar 

  93. Uusisaari M, Obata K, Knöpfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97:901–911. https://doi.org/10.1152/jn.00974.2006

    Article  CAS  PubMed  Google Scholar 

  94. Langlais PJ, Anderson G, Guo SX, Bondy SC (1997) Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis 12:137–143. https://doi.org/10.1007/BF02674735

    Article  CAS  PubMed  Google Scholar 

  95. Desjardins P, Butterworth RF (2005) Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy. Mol Neurobiol 31:17–25. https://doi.org/10.1385/MN:31:1-3:017

    Article  CAS  PubMed  Google Scholar 

  96. Zuccoli G, Pipitone N (2009) Neuroimaging findings in acute Wernicke’s encephalopathy: review of the literature. Am J Roentgenol 192:501–508. https://doi.org/10.2214/AJR.07.3959

    Article  Google Scholar 

  97. Todd KG, Butterworth RF (1998) Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp Neurol 149:130–138. https://doi.org/10.1006/exnr.1997.6677

    Article  CAS  PubMed  Google Scholar 

  98. Todd KG, Butterworth RF (1999) Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia 25:190–198

    Article  CAS  Google Scholar 

  99. Langlais P, Mair R (1990) Protective effects of the glutamate antagonist MK-801 on pyrithiamine- induced lesions and amino acid changes in rat brain. J Neurosci 10:1664–1674. https://doi.org/10.1523/JNEUROSCI.10-05-01664.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rigon AP, Cordova FM, Oliveira CS, Posser T, Costa AP, Silva IG, Santos DA, Rossi FM, Rocha JBT, Leal RB (2008) Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38MAPK. Neurotoxicology 29:727–734. https://doi.org/10.1016/j.neuro.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  101. Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB, Tasca CI (2008) Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 33:27–36. https://doi.org/10.1007/s11064-007-9402-1

    Article  CAS  PubMed  Google Scholar 

  102. Wang JJ-L, Hua Z, Fentress HM, Singleton CK (2000) JNK1 is inactivated during thiamine deficiency-induced apoptosis in human neuroblastoma cells. J Nutr Biochem 11:208–215. https://doi.org/10.1016/S0955-2863(00)00067-X

    Article  CAS  PubMed  Google Scholar 

  103. Kawakami Z, Ikarashi Y, Kase Y (2010) Glycyrrhizin and its metabolite 18 beta-glycyrrhetinic acid in glycyrrhiza, a constituent herb of yokukansan, ameliorate thiamine deficiency-induced dysfunction of glutamate transport in cultured rat cortical astrocytes. Eur J Pharmacol 626:154–158. https://doi.org/10.1016/j.ejphar.2009.09.046

    Article  CAS  PubMed  Google Scholar 

  104. Schipper H, Song W (2015) A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. Int J Mol Sci 16:5400–5419. https://doi.org/10.3390/ijms16035400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schipper HM, Song W, Tavitian A, Cressatti M (2019) The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 172:40–70. https://doi.org/10.1016/j.pneurobio.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  106. Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D (2009) Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 110:469–485. https://doi.org/10.1111/j.1471-4159.2009.06160.x

    Article  CAS  PubMed  Google Scholar 

  107. Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995–2011. https://doi.org/10.1016/j.freeradbiomed.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  108. Aggeli I-K, Theofilatos D, Beis I, Gaitanaki C (2011) Insulin-induced oxidative stress up-regulates heme oxygenase-1 via diverse signaling cascades in the C2 skeletal myoblast cell line. Endocrinology 152:1274–1283. https://doi.org/10.1210/en.2010-1319

    Article  CAS  PubMed  Google Scholar 

  109. Canas N, Valero T, Villarroya M, Montell E, Verges J, Garcia AG, Lopez MG (2007) Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase/Akt. J Pharmacol Exp Ther 323:946–953. https://doi.org/10.1124/jpet.107.123505

    Article  CAS  PubMed  Google Scholar 

  110. Engel DF, de Oliveira J, Lieberknecht V, Rodrigues ALS, de Bem AF, Gabilan NH (2018) Duloxetine protects human neuroblastoma cells from oxidative stress-induced cell death through Akt/Nrf-2/HO-1 pathway. Neurochem Res 43:387–396. https://doi.org/10.1007/s11064-017-2433-3

    Article  CAS  PubMed  Google Scholar 

  111. Aggeli I-KS, Gaitanaki C, Beis I (2006) Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells. Cell Signal 18:1801–1812. https://doi.org/10.1016/j.cellsig.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  112. Zhang X, Bedard EL, Potter R, Zhong R, Alam J, Choi AMK, Lee PJ (2002) Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury. Am J Physiol Lung Cell Mol Physiol 283:L815–L829. https://doi.org/10.1152/ajplung.00485.2001

    Article  CAS  PubMed  Google Scholar 

  113. Wijayanti N, Kietzmann T, Immenschuh S (2005) Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via a protein kinase B, p38-dependent signaling pathway in monocytes. J Biol Chem 280:21820–21829. https://doi.org/10.1074/jbc.M502943200

    Article  CAS  PubMed  Google Scholar 

  114. Doré S, Sampei K, Goto S, Alkayed NJ, Guastella D, Blackshaw S, Gallagher M, Traystman RJ, Hurn PD, Koehler RC, Snyder SH (1999) Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol Med 5:656–663

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil (Grant Number 470252/2013-8). L. M. Pereira, S. D. C. Rodrigues, and H. Q. S. Aguiar are fellows from the Institutional Program of Scientific Initiation Scholarships of the Universidade Federal do Tocantins (PIBIC/CNPq/UFT). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors meet the requirements for authorship. RCNM, AYJr, CASC and FMC conceived and designed the experiments; RCNM, JOM, LMP, SDCR, HQSA and FMC performed the experiments. RCNM, AYJr, CASC and FMC performed the experiments and wrote the main manuscript text. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Fabiano Mendes de Cordova.

Ethics declarations

Conflict of interest

The authors do not have any financial or personal relationships that could inappropriately influence or bias the content of the paper.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Universidade Federal do Tocantins Ethics Committee on Animal Use, CEUA-UFT, Permit Number 23101.000284/2014-13).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medeiros, R.C.N., Moraes, J.O., Rodrigues, S.D.C. et al. Thiamine Deficiency Modulates p38MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes. Neurochem Res 45, 940–955 (2020). https://doi.org/10.1007/s11064-020-02975-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02975-7

Keywords

Navigation