Skip to main content
Log in

A One-Step Process for the Construction of Phage Display scFv and VHH Libraries

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this work we present a one-step cloning approach for the establishment of antibody phage display libraries relying on type IIs restriction enzymes. We show that single chain variable fragment (scFv) libraries with adequate qualities can readily be cloned in a ‘scar-less’ manner and that the isolation of antigen-specific antibodies from immunized chickens is feasible within three selection rounds. Moreover, we demonstrate the general applicability of this method by rapidly constructing and panning VHH single domain antibody phage display libraries from immunized Llama repertoires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BLI:

Bio-layer interferometry

BSA:

Bovine serum albumin

CDR:

Complementarity-determining region

ECD:

Extracellular domain

EGFR:

Epidermal Growth Factor Receptor

ELISA:

Enzyme-linked immunosorbent assay

Fab:

Antigen-binding fragment

GGC:

Golden Gate Cloning

IPTG:

Isopropyl-beta-d-thiogalacto pyranoside

MTP:

Microtiter plate

PBS:

Phosphate-buffered saline

RT:

Room temperature

ScFv:

Single chain variable fragment

TMB:

3,3′,5,5′-Tetramethylbenzidne

VH:

Variable domain of the heavy chain

VHH:

Variable domain of the heavy chain of a heavy chain only antibody

VL:

Variable domain of the light chain

References

  1. Kaplon, H., & Reichert, J. M. (2019). Antibodies to watch in 2019. mAbs,11(2), 219–238.

    Article  CAS  Google Scholar 

  2. Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature,256(5517), 495–497.

    Article  Google Scholar 

  3. Brüggemann, M., et al. (2015). Human antibody production in transgenic animals. Archivum Immunologiae et Therapiae Experimentalis,63(2), 101–108.

    Article  Google Scholar 

  4. Ching, K. H., et al. (2018). Chickens with humanized immunoglobulin genes generate antibodies with high affinity and broad epitope coverage to conserved targets. mAbs,10(1), 71–80.

    Article  CAS  Google Scholar 

  5. Harris, K. E., et al. (2018). Sequence-based discovery demonstrates that fixed light chain human transgenic rats produce a diverse repertoire of antigen-specific antibodies. Frontiers in Immunology,9, 889.

    Article  Google Scholar 

  6. Jakobovits, A. (1995). Production of fully human antibodies by transgenic mice. Current Opinion in Biotechnology,6(5), 561–566.

    Article  CAS  Google Scholar 

  7. Lonberg, N. (2005). Human antibodies from transgenic animals. Nature Biotechnology,23(9), 1117–1125.

    Article  CAS  Google Scholar 

  8. Mondon, P. (2008). Human antibody libraries: A race to engineer and explore a larger diversity. Frontiers in Bioscience,13(13), 1117.

    Article  CAS  Google Scholar 

  9. Frenzel, A., et al. (2017). Designing human antibodies by phage display. Transfusion Medicine and Hemotherapy,44(5), 312–318.

    Article  Google Scholar 

  10. Lipovsek, D., & Plückthun, A. (2004). In-vitro protein evolution by ribosome display and mRNA display. Journal of Immunological Methods,290(1–2), 51–67.

    Article  CAS  Google Scholar 

  11. Doerner, A., Rhiel, L., Zielonka, S., & Kolmar, H. (2014). Therapeutic antibody engineering by high efficiency cell screening. FEBS Letters,588(2), 278–287.

    Article  CAS  Google Scholar 

  12. Bradbury, A. R. M., Sidhu, S., Dübel, S., & McCafferty, J. (2011). Beyond natural antibodies: The power of in vitro display technologies. Nature Biotechnology,29(3), 245–254.

    Article  CAS  Google Scholar 

  13. Frenzel, A., Schirrmann, T., & Hust, M. (2016). Phage display-derived human antibodies in clinical development and therapy. Mabs,8(7), 1177–1194.

    Article  CAS  Google Scholar 

  14. Breitling, F., Dübel, S., Seehaus, T., Klewinghaus, I., & Little, M. (1991). A surface expression vector for antibody screening. Gene,104(2), 147–153.

    Article  CAS  Google Scholar 

  15. Hust, M., et al. (2011). A human scFv antibody generation pipeline for proteome research. Journal of Biotechnology,152(4), 159–170.

    Article  CAS  Google Scholar 

  16. de Haard, H. J., et al. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. Journal of Biological Chemistry,274(26), 18218–18230.

    Article  Google Scholar 

  17. Vincke, C., Gutiérrez, C., Wernery, U., Devoogdt, N., Hassanzadeh-Ghassabeh, G., & Muyldermans, S. (2012). Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. In P. Chames (Ed.), Antibody engineering (Vol. 907, pp. 145–176). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  18. Könning, D., et al. (2017). Camelid and shark single domain antibodies: Structural features and therapeutic potential. Current Opinion in Structural Biology,45, 10–16.

    Article  Google Scholar 

  19. Ubah, O. C., Barelle, C. J., Buschhaus, M. J., & Porter, A. J. (2016). Phage display derived IgNAR V region binding domains for therapeutic development. Current Pharmaceutical Design,22(43), 6519–6526.

    Article  CAS  Google Scholar 

  20. Kügler, J., et al. (2015). Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnology,15(1), 10.

    Article  Google Scholar 

  21. Roth, L., et al. (2019). Facile generation of antibody heavy and light chain diversities for yeast surface display by Golden Gate Cloning. Biological Chemistry,400(3), 383–393.

    Article  CAS  Google Scholar 

  22. Rosowski, S., et al. (2018). A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microbial Cell Factories,17(1), 3.

    Article  Google Scholar 

  23. Krah, S., et al. (2018). A streamlined approach for the construction of large yeast surface display Fab antibody libraries. In D. Nevoltris & P. Chames (Eds.), Antibody engineering (Vol. 1827, pp. 145–161). New York: Springer.

    Chapter  Google Scholar 

  24. Nelson, R. S., & Valadon, P. (2017). A universal phage display system for the seamless construction of Fab libraries. Journal of Immunological Methods,450, 41–49.

    Article  CAS  Google Scholar 

  25. Grzeschik, J., et al. (2019). Yeast surface display in combination with fluorescence-activated cell sorting enables the rapid isolation of antibody fragments derived from immunized chickens. Biotechnology Journal,14(4), 1800466.

    Article  Google Scholar 

  26. Jäger, V., et al. (2013). High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnology,13, 52.

    Article  Google Scholar 

  27. Lefranc, M.-P., et al. (2015). IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Research,43(D1), D413–D422.

    Article  CAS  Google Scholar 

  28. Tsurushita, N., et al. (2004). Humanization of a chicken anti-IL-12 monoclonal antibody. Journal of Immunological Methods,295(1–2), 9–19.

    Article  CAS  Google Scholar 

  29. Nishibori, N., Horiuchi, H., Furusawa, S., & Matsuda, H. (2006). Humanization of chicken monoclonal antibody using phage-display system. Molecular Immunology,43(6), 634–642.

    Article  CAS  Google Scholar 

  30. Conrath, K., Wernery, U., Muyldermans, S., & Nguyen, V. (2003). Emergence and evolution of functional heavy-chain antibodies in Camelidae. Developmental & Comparative Immunology,27(2), 87–103.

    Article  CAS  Google Scholar 

  31. De Genst, E., Saerens, D., Muyldermans, S., & Conrath, K. (2006). Antibody repertoire development in camelids. Developmental & Comparative Immunology,30(1–2), 187–198.

    Article  Google Scholar 

  32. Dübel, S., Stoevesandt, O., Taussig, M. J., & Hust, M. (2010). Generating recombinant antibodies to the complete human proteome. Trends in Biotechnology,28(7), 333–339.

    Article  Google Scholar 

  33. Hoet, R. M., et al. (2005). Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nature Biotechnology,23(3), 344–348.

    Article  CAS  Google Scholar 

  34. Griffiths, A. D., et al. (1994). Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO Journal,13(14), 3245–3260.

    Article  CAS  Google Scholar 

  35. Knappik, A., et al. (2000). Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. Journal of Molecular Biology,296(1), 57–86.

    Article  CAS  Google Scholar 

  36. Rasetti-Escargueil, C., et al. (2015). Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B. mAbs,7(6), 1161–1177.

    Article  CAS  Google Scholar 

  37. Almagro, J. C., Pedraza-Escalona, M., Arrieta, H. I., & Pérez-Tapia, S. M. (2019). Phage display libraries for antibody therapeutic discovery and development. Antibodies,8(3), 44.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Harald Kolmar for providing RNA and cDNA from EGFR-immunized chicken.

Author information

Authors and Affiliations

Authors

Contributions

SZ, CS and LP designed the experiments. LP, CB, EC, BV, LT, SB and SK performed in silico analysis and experiments. JK, AF and MH gave scientific advice and guidance on overall strategy. CS, LP and SZ wrote the manuscript.

Corresponding author

Correspondence to Stefan Zielonka.

Ethics declarations

Conflict of interests

All authors are either affiliated with Merck Healthcare KGaA or Yumab GmbH.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellmann, C., Pekar, L., Bauer, C. et al. A One-Step Process for the Construction of Phage Display scFv and VHH Libraries. Mol Biotechnol 62, 228–239 (2020). https://doi.org/10.1007/s12033-020-00236-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00236-0

Keywords

Navigation