Skip to main content

Advertisement

Log in

A Comparative Classification Analysis of Abdominal Aortic Aneurysms by Machine Learning Algorithms

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this work was to perform image-based classification of abdominal aortic aneurysms (AAA) based on their demographic, geometric, and biomechanical attributes. We retrospectively reviewed existing demographics and abdominal computed tomography angiography images of 100 asymptomatic and 50 symptomatic AAA patients who received an elective or emergent repair, respectively, within 1–6 months of their last follow up. An in-house script developed within the MATLAB computational platform was used to segment the clinical images, calculate 53 descriptors of AAA geometry, and generate volume meshes suitable for finite element analysis (FEA). Using a third party FEA solver, four biomechanical markers were calculated from the wall stress distributions. Eight machine learning algorithms (MLA) were used to develop classification models based on the discriminatory potential of the demographic, geometric, and biomechanical variables. The overall classification performance of the algorithms was assessed by the accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and precision of their predictions. The generalized additive model (GAM) was found to have the highest accuracy (87%), AUC (89%), and sensitivity (78%), and the third highest specificity (92%), in classifying the individual AAA as either asymptomatic or symptomatic. The k-nearest neighbor classifier yielded the highest specificity (96%). GAM used seven markers (six geometric and one biomechanical) to develop the classifier. The maximum transverse dimension, the average wall thickness at the maximum diameter, and the spatially averaged wall stress were found to be the most influential markers in the classification analysis. A second classification analysis revealed that using maximum diameter alone results in a lower accuracy (79%) than using GAM with seven geometric and biomechanical markers. We infer from these results that biomechanical and geometric measures by themselves are not sufficient to discriminate adequately between population samples of asymptomatic and symptomatic AAA, whereas MLA offer a statistical approach to stratification of rupture risk by combining demographic, geometric, and biomechanical attributes of patient-specific AAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brown, P. M., D. T. Zelt, and B. Sobolev. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J. Vasc. Surg. 37(2):280–284, 2003.

    Article  PubMed  Google Scholar 

  2. Chaikof, E. L., R. L. Dalman, M. K. Eskandari, B. M. Jackson, W. A. Lee, M. A. Mansour, T. M. Mastracci, M. Mell, M. H. Murad, L. L. Nguyen, G. S. Oderich, M. S. Patel, M. L. Schermerhorn, and B. W. Starnes. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 67(1):2–77, 2018.

    Article  PubMed  Google Scholar 

  3. Cui, S. S., L. K. Zhao, Y. M. Wang, Q. Dong, J. X. Ma, Y. Wang, W. Zhao, and X. Ma. Using Naive Bayes classifier to predict osteonecrosis of the femoral head with cannulated screw fixation. Injury. 49(10):1865–1870, 2018.

    Article  PubMed  Google Scholar 

  4. Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation. 56(3 Suppl):II161–II164, 1977.

    CAS  PubMed  Google Scholar 

  5. Endo, A., A. Shiraishi, K. Fushimi, K. Murata, and Y. Otomo. Outcomes of patients receiving a massive transfusion for major trauma. Br. J. Surg. 105(11):1426–1434, 2018.

    Article  CAS  PubMed  Google Scholar 

  6. Farag, A. A., A. Ali, and S. Elshazly. Feature fusion for lung nodule classification. Int. J. CARS. 12(10):1809–1818, 2017.

    Article  Google Scholar 

  7. Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36(3):589–597, 2002.

    Article  PubMed  Google Scholar 

  8. Gasser, T. C. Biomechanical rupture risk assessment: a consistent and objective decision-making tool for abdominal aortic aneurysm patients. Aorta. 4(2):42–60, 2016.

    Article  PubMed  Google Scholar 

  9. Jeong, C., J. H. Min, and M. S. Kim. A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction. Expert Syst. Appl. 39(3):3650–3658, 2012.

    Article  Google Scholar 

  10. Larsson, E., F. Labruto, T. C. Gasser, J. Swedenborg, and R. Hultgren. Analysis of aortic wall stress and rupture risk in patients with abdominal aortic aneurysm with a gender perspective. J. Vasc. Surg. 54(2):295–299, 2011.

    Article  PubMed  Google Scholar 

  11. Lau, L., Y. Kankanige, B. Rubinstein, R. Jones, C. Christophi, V. Muralidharan, and J. Bailey. Machine-learning algorithms predict graft failure after liver transplantation. Transplantation. 101(4):E125–E132, 2017.

    Article  PubMed  Google Scholar 

  12. Leathwick, J. R., J. Elith, and T. Hastie. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 199(2):188–196, 2006.

    Article  Google Scholar 

  13. Lee, K., J. Zhu, J. Shum, Y. Zhang, S. C. Muluk, A. Chandra, M. K. Eskandari, and E. A. Finol. Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis. Ann. Biomed. Eng. 41:562–576, 2013.

    Article  PubMed  Google Scholar 

  14. Leemans, E. L., T. P. Willems, C. H. Slump, M. J. van der Laan, and C. J. Zeebregts. Additional value of biomechanical indices based on CTA for rupture risk assessment of abdominal aortic aneurysms. PLoS ONE. 13(8):e0202672, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maier, A., M. Gee, C. Reeps, J. Pongratz, H.-H. Eckstein, and W. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131(6):061015, 2009.

    Article  PubMed  Google Scholar 

  17. Mastracci, T. M., L. Garrido-Olivares, C. S. Cinà, and C. M. Clase. Endovascular repair of ruptured abdominal aortic aneurysms: a systematic review and meta-analysis. J. Vasc. Surg. 47(1):214–221, 2008.

    Article  PubMed  Google Scholar 

  18. Min, K. W., D. H. Kim, B. K. Son, E. K. Kim, S. B. Ahn, S. H. Kim, Y. J. Jo, Y. S. Park, J. Seo, Y. H. Oh, S. Oh, H. Y. Kim, M. J. Kwon, S. K. Min, H. R. Park, J. Y. Choe, J. Y. Jeon, H. I. Ha, and J. W. Lee. Invasion depth measured in millimeters is a predictor of survival in patients with distal bile duct cancer: decision tree approach. World J. Surg. 41(1):232–240, 2017.

    Article  PubMed  Google Scholar 

  19. Mower, W. R., L. J. Baraff, and J. Sneyd. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J. Surg. Res. 55(2):155–161, 1993.

    Article  CAS  PubMed  Google Scholar 

  20. Parikh, S. A., R. Gomez, M. Thirugnanasambandam, S. S. Chauhan, V. De Oliveira, S. C. Muluk, M. K. Eskandari, and E. A. Finol. Decision tree based classification of abdominal aortic aneurysms using geometry quantification measures. Ann. Biomed. Eng. 46:2135–2147, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Polzer, S., and T. C. Gasser. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J. R. Soc. Interface. 12(113):20150852, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Raut, S. S., P. Liu, and E. A. Finol. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling. J. Biomech. 48(10):1972–1981, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shum, J., E. S. Di Martino, A. Goldhammer, D. H. Goldman, L. C. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37(2):638–648, 2010.

    Article  PubMed  Google Scholar 

  25. Shum, J., G. Martufi, E. S. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39:277–286, 2011.

    Article  PubMed  Google Scholar 

  26. Tang, A., C. Kauffmann, S. Tremblay-Paquet, S. Elkouri, O. Steinmetz, F. Morin-Roy, L. Cloutier-Gill, and G. Soulez. Morphologic evaluation of ruptured and symptomatic abdominal aortic aneurysm by three-dimensional modeling. J. Vasc. Surg. 59(4):894–902, 2014.

    Article  CAS  PubMed  Google Scholar 

  27. Wijeysundera, D. N., K. Karkouti, J. Y. Dupuis, V. Rao, C. T. Chan, J. T. Granton, and W. S. Beattie. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 297(16):1801–1809, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Xenos, M., S. H. Rambhia, Y. Alemu, S. Einav, N. Labropoulos, A. Tassiopoulos, J. J. Ricotta, and D. Bluestein. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann. Biomed. Eng. 38(11):3323–3337, 2010.

    Article  PubMed  Google Scholar 

  29. Zheng, S. F., and W. X. Liu. An experimental comparison of gene selection by Lasso and Dantzig selector for cancer classification. Comput. Biol. Med. 41(11):1033–1040, 2011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research funding was provided in part by National Institutes of Health Award No. R01HL121293. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The use of ANSYS Ensight is gratefully acknowledged through an educational licensing agreement with Ansys, Inc.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender A. Finol.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rengarajan, B., Wu, W., Wiedner, C. et al. A Comparative Classification Analysis of Abdominal Aortic Aneurysms by Machine Learning Algorithms. Ann Biomed Eng 48, 1419–1429 (2020). https://doi.org/10.1007/s10439-020-02461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02461-9

Keywords

Navigation