Skip to main content
Log in

Wireless Pacing Using an Asynchronous Three-Tiered Inductive Power Transfer System

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite numerous advancements in pacemaker technology for the treatment of cardiac arrhythmias and conduction disorders, lead-related complications associated with these devices continue to compromise patient safety and survival. In this work, we present a system architecture that has the capacity to deliver power to a wireless, batteryless intravascular pacer. This was made possible through a three-tiered, dual-sub-system, four-coil design, which operates on two different frequencies through intermittent remote-controlled inductive power transfer. System efficiency was enhanced using coil design optimization, and validated using numerical simulations and experimental analysis. Our pacemaker design was concepted to achieve inductive power transfer over a 55 mm range to a microscale pacer with a 3 mm diameter. Thus, the proposed system design enabled long-range wireless power transfer to a small implanted pacer with the capacity for intravascular deployment to the anterior cardiac vein. This proposed stent-like fixation mechanism can bypass the multitude of complications associated with pacemaker wires while wireless power can eliminate the need for repeated procedures for battery replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abiri, P., A. Abiri, R. R. S. Packard, Y. Ding, A. Yousefi, J. Ma, M. Bersohn, K.-L. Nguyen, D. Markovic, S. Moloudi, and T. K. Hsiai. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Sci. Rep. 7:6180, 2017.

    Article  Google Scholar 

  2. Agrawal, D. R., Y. Tanabe, D. Weng, A. Ma, S. Hsu, S. Y. Liao, Z. Zhen, Z. Y. Zhu, C. Sun, Z. Dong, F. Yang, H. F. Tse, A. S. Y. Poon, and J. S. Ho. Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nat. Biomed. Eng. 2017. https://doi.org/10.1038/s41551-017-0043.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ali, H., T. J. Ahmad, and S. A. Khan. Inductive Link Design for Medical Implants, 2009.

  4. Auricchio, A., P. P. Delnoy, F. Regoli, M. Seifert, T. Markou, and C. Butter. First-in-man implantation of leadless ultrasound-based cardiac stimulation pacing system: novel endocardial left ventricular resynchronization therapy in heart failure patients. Europace 15:1191–1197, 2013.

    Article  Google Scholar 

  5. Bakogianni, S., and S. Koulouridis. Sub-1 GHz far-field powering of implantable medical devices: design and safety considerations, 2015.

  6. Chen, S. C. Q., and V. Thomas. Optimization of Inductive RFID Technology. In: Int. Symp. Electron. Environ, 2001, pp. 82–87.

  7. Cleveland, R. F., D. M. Sylvar, and J. L. Ulcek. Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Washington, D.C., 1997.

  8. FDA Executive Summary Memorandum General Issues: Leadless Pacemaker Devices. Gaithersburg, 2016.

  9. Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication. Chippenham: Wiley, 2010. https://doi.org/10.1002/9780470665121.

    Book  Google Scholar 

  10. Grandolfo, M., P. Vecchia, and O. P. Gandhi. Magnetic resonance imaging: calculation of rates of energy absorption by a human-torso model. Bioelectromagnetics 11:117–128, 1990.

    Article  CAS  Google Scholar 

  11. Grover, F. W. Inductance calculations: working formulas and tables. Instrum. Soc. Am., 1946.

  12. Heetderks, W. J. RF powering of millimeter- and submillimeter-sized neural prosthetic implants. IEEE Trans. Biomed. Eng. 35:323–327, 1988.

    Article  CAS  Google Scholar 

  13. Ho, J. S., A. J. Yeh, E. Neofytou, S. Kim, Y. Tanabe, B. Patlolla, R. E. Beygui, and A. S. Y. Poon. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 111:7974–7979, 2014.

    Article  CAS  Google Scholar 

  14. Hwang, G. T., H. Park, J. H. Lee, S. Oh, K. Il Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, H. Kwon, S. G. Lee, B. Joung, and K. J. Lee. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26:4880–4887, 2014.

    Article  CAS  Google Scholar 

  15. Jeon, D., Y. Chen, Y. Lee, Y. Kim, Z. Foo, G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, and D. Sylvester. An implantable 64nW ECG-monitoring mixed-signal soc for arrhythmia diagnosis, 2014.

  16. Jow, U., and M. Ghovanloo. Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. Optimization 1:193–202, 2008.

    Google Scholar 

  17. Karami, M. A., and D. J. Inman. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100:042901, 2012.

    Article  Google Scholar 

  18. Kiani, M., U. M. Jow, and M. Ghovanloo. Design and optimization of a 3 coil inductive link for efficient wireless power transmission. IEEE Trans. Biomed. Circuits Syst. 5:579–591, 2011.

    Article  Google Scholar 

  19. Kim, S., J. S. Ho, L. Y. Chen, and A. S. Y. Poon. Wireless power transfer to a cardiac implant. Appl. Phys. Lett. 101:1–5, 2012.

    Google Scholar 

  20. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic. Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86, 2007.

    Article  CAS  Google Scholar 

  21. Lee, H. M., and M. Ghovanloo. A power-efficient wireless capacitor charging system through an inductive link. IEEE Trans. Circuits Syst. II Express Briefs 60:707–711, 2013.

    Article  Google Scholar 

  22. Lee, B., M. Kiani, and M. Ghovanloo. A triple-loop inductive power transmission system for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 10:138–148, 2016.

    Article  Google Scholar 

  23. Lee, S. Y., M. Y. Su, M. C. Liang, Y. Y. Chen, C. H. Hsieh, C. M. Yang, H. Y. Lai, J. W. Lin, and Q. Fang. A programmable implantable microstimulator soc with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans. Biomed. Circuits Syst. 5:511–522, 2011.

    Article  Google Scholar 

  24. Li, X., C. Y. Tsui, and W. H. Ki. A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. IEEE J. Solid-State Circuits 50:978–989, 2015.

    Article  Google Scholar 

  25. Loeb, G. E., C. J. Zamin, J. H. Schulman, and P. R. Troyk. Injectable microstimulator for functional electrical stimulation. Med. Biol. Eng. Comput. 1991. https://doi.org/10.1007/BF02446097.

    Article  PubMed  Google Scholar 

  26. Mela, T., and J. P. Singh. Leadless pacemakers: leading us into the future? Eur. Heart J. 36:2520–2522, 2015.

    Article  Google Scholar 

  27. MicraTM MC1VR01 Clinical Manual. Minneapolis, 2016.

  28. Monti, G., L. Tarricone, and C. Trane. Experimental characterization of a 434 MHz wireless energy link for medical applications. Prog. Electromagn. Res. C 30:53–64, 2012.

    Article  Google Scholar 

  29. Neagu, C. R., H. V. Jansen, A. Smith, J. G. E. Gardeniers, and M. C. Elwenspoek. Characterization of a planar microcoil for implantable microsystems. Sens Actuators A 62:599–611, 1997.

    Article  CAS  Google Scholar 

  30. Ouyang, H., Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z. L. Wang, H. Zhang, and Z. Li. Symbiotic cardiac pacemaker. Nat. Commun. 10:1821, 2019.

    Article  Google Scholar 

  31. Parramon, J., P. Doguet, D. Marin, M. Verleyssen, R. Munoz, L. Leija, and E. Valderrama. ASIC-based batteryless implantable telemetry microsystem for recording purposes, 1997.

  32. RamRakhyani, A. K., S. Mirabbasi, and M. Chiao. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 5:48–63, 2011.

    Article  CAS  Google Scholar 

  33. Seol, S. J., H. Cho, D. H. Yoon, and S. H. Jang. Appropriate depth of needle insertion during rhomboid major trigger point block. Ann. Rehabil. Med. 38:72–76, 2014.

    Article  Google Scholar 

  34. Sperzel, J., H. Burri, D. Gras, F. V. Y. Tjong, R. E. Knops, G. Hindricks, C. Steinwender, and P. Defaye. State of the art of leadless pacing. Europace 17:1508–1513, 2015.

    Article  Google Scholar 

  35. Sun, J. P., X. S. Yang, Y. Y. Lam, M. J. Garcia, and C. M. Yu. Evaluation of coronary venous anatomy by multislice computed tomography. World J. Cardiovasc. Surg. 2:91–95, 2012.

    Article  Google Scholar 

  36. Udo, E. O., N. P. A. Zuithoff, N. M. Van Hemel, C. C. De Cock, T. Hendriks, P. A. Doevendans, and K. G. M. Moons. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Hear Rhythm 9:728–735, 2012.

    Article  Google Scholar 

  37. Vest, A. N., L. Zhou, X. Huang, V. Norekyan, Y. Bar-Cohen, R. H. Chmait, and G. E. Loeb. Design and testing of a transcutaneous RF recharging system for a fetal micropacemaker. IEEE Trans. Biomed. Circuits Syst. 2017. https://doi.org/10.1109/TBCAS.2016.2620805.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Von Arx, J. A., and K. Najafi. A wireless single-chip telemetry-powered neural stimulation system. In: 1999 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. ISSCC. First Ed. (Cat. No.99CH36278), pp. 214–215, 1999.https://doi.org/10.1109/isscc.1999.759199

  39. Welsby, V. G. The Theory and Design of Inductance Coils. London: Wiley, 1960.

    Google Scholar 

  40. Wong, L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Nääs. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid State Circuits 39:2446–2456, 2004.

    Article  Google Scholar 

  41. Xi Nan, and C. R. Sullivan. An improved calculation of proximity-effect loss in high-frequency windings of round conductors, 2003. https://doi.org/10.1109/pesc.2003.1218168

  42. Zhang, Z., K. T. Chau, C. Qiu, and C. Liu. Energy encryption for wireless power transfer. IEEE Trans. Power Electron. 30:5237–5246, 2015.

    Article  Google Scholar 

  43. Zhong, W., C. K. Lee, and S. Y. Ron Hui. General analysis on the use of tesla’s resonators in domino forms for wireless power transfer. IEEE Trans. Ind. Electron. 60:261–270, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health HL118650 (T.K. Hsiai), HL129727 (T.K. Hsiai), HL111437 (T.K. Hsiai), BX004356 (T.K. Hsiai), EB0220002 (T.K. Hsiai), GM008042 (P. Abiri), and UCLA David Geffen Scholarship (P. Abiri).

Conflicts of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung K. Hsiai.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiri, P., Abiri, A., Gudapati, V. et al. Wireless Pacing Using an Asynchronous Three-Tiered Inductive Power Transfer System. Ann Biomed Eng 48, 1368–1381 (2020). https://doi.org/10.1007/s10439-020-02450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02450-y

Keywords

Navigation