Skip to main content

Advertisement

Log in

Influx rate constant of 18F-FDG increases in metastatic lymph nodes of non-small cell lung cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Primary tumor (PT) and metastatic lymph node (MLN) status have a great influence on diagnosis and treatment of lung cancer. Our main purpose was to investigate the imaging characteristics of PT or MLN by applying the 18F-FDG PET dynamic modeling approach for non-small cell lung cancer (NSCLC).

Methods

Dynamic 18F-FDG PET scans were performed for 76 lung cancer patients, and 62 NSCLC cases were finally included in this study: 37 with newly diagnosed early and locally advanced lung cancer without distant metastases (group M0) and 25 metastatic lung cancer (group M1). Patlak graphic analysis (Ki calculation) based on the dynamic modeling and SUV analysis from conventional static data were performed.

Results

For PT, both KiPT (0.050 ± 0.005 vs 0.026 ± 0.004 min−1, p < 0.001) and SUVPT (8.41 ± 0.64 vs 5.23 ± 0.73, p < 0.01) showed significant higher values in group M1 than M0. For MLN, KiMLN showed significant higher values in M1 than M0 (0.033 ± 0.005 vs 0.016 ± 0.003 min−1, p < 0.01), while no significant differences were found for SUVMLN between M0 and M1 (4.22 ± 0.49 vs 5.57 ± 0.59, p > 0.05). Both SUV PT and KiPT showed significant high values in squamous cell carcinoma than adenocarcinoma, but neither SUVPT nor KiPT showed significant differences between EGFR mutants versus wild types. The overall Spearman analysis for SUV and Ki from different groups showed variable correlation (r = 0.46–0.94).

Conclusion

The dynamic modeling for MLN (KiMLN) showed more sensitive than the static analysis (SUV) to detect metastatic lymph nodes in NSCLC, although both methods were sensitive for PT. This methodology of non-invasive imaging may become an important tool to evaluate MLN and PT status for patients who cannot undergo histological examination.

Clinical trial registration

The clinical trial registration number is NCT03679936 (http://www.clinicaltrials.gov/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. May M. Statistics: attacking an epidemic. Nature. 2014;509:S50–1. https://doi.org/10.1038/509S50a.

    Article  CAS  PubMed  Google Scholar 

  2. Lortet-Tieulent J, Soerjomataram I, Ferlay J, Rutherford M, Weiderpass E, Bray F. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer (Amsterdam, Netherlands). 2014;84:13–22. https://doi.org/10.1016/j.lungcan.2014.01.009.

    Article  CAS  Google Scholar 

  3. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med. 1996;23:1409–15.

    Article  CAS  Google Scholar 

  4. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med : official publication, Society of Nuclear Medicine. 1980;21:670–5.

    CAS  Google Scholar 

  5. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med : official publication, Society of Nuclear Medicine. 1994;35:1308–12.

    CAS  Google Scholar 

  6. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000;27:643–6.

    Article  CAS  Google Scholar 

  7. Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med : official publication, Society of Nuclear Medicine. 1995;36:1836–9.

    Google Scholar 

  8. Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL. Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology. 1999;213:521–5. https://doi.org/10.1148/radiology.213.2.r99nv37521.

    Article  CAS  PubMed  Google Scholar 

  9. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50. https://doi.org/10.1148/radiology.189.3.8234714.

    Article  CAS  PubMed  Google Scholar 

  10. Laffon E, de Clermont H, Begueret H, Vernejoux JM, Thumerel M, Marthan R, et al. Assessment of dual-time-point 18F-FDG-PET imaging for pulmonary lesions. Nucl Med Commun. 2009;30:455–61. https://doi.org/10.1097/MNM.0b013e32832bdcac.

    Article  PubMed  Google Scholar 

  11. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1983;3:1–7. https://doi.org/10.1038/jcbfm.1983.1.

    Article  CAS  Google Scholar 

  12. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88. https://doi.org/10.1002/ana.410060502.

    Article  CAS  PubMed  Google Scholar 

  13. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med : official publication, Society of Nuclear Medicine. 1989;30:359–66.

    CAS  Google Scholar 

  14. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1998;18:716–23. https://doi.org/10.1097/00004647-199807000-00002.

    Article  CAS  Google Scholar 

  15. van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans. J Nucl Med : official publication, Society of Nuclear Medicine. 2001;42:1622–9.

    Google Scholar 

  16. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151:193–203. https://doi.org/10.1016/j.chest.2016.10.010.

    Article  Google Scholar 

  17. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med : official publication, Society of Nuclear Medicine. 2009;50(Suppl 1):11s–20s. https://doi.org/10.2967/jnumed.108.057182.

    Article  CAS  Google Scholar 

  18. Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35:2320–33. https://doi.org/10.1007/s00259-008-0874-2.

    Article  PubMed  Google Scholar 

  19. Boellaard R, van Lingen A, Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med : official publication, Society of Nuclear Medicine. 2001;42:808–17.

    CAS  Google Scholar 

  20. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9. https://doi.org/10.1109/42.363108.

    Article  CAS  Google Scholar 

  21. Freedman NM, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30:46–53. https://doi.org/10.1007/s00259-002-0981-4.

    Article  PubMed  Google Scholar 

  22. Vieira S, Corrente JE. Statistical methods for assessing agreement between double readings of clinical measurements. J Appl Oral Sci : revista FOB. 2011;19:488–92.

    Article  Google Scholar 

  23. van Baardwijk A, Dooms C, van Suylen RJ, Verbeken E, Hochstenbag M, Dehing-Oberije C, et al. The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. Eur J Cancer (Oxford, England : 1990). 2007;43:1392–8. https://doi.org/10.1016/j.ejca.2007.03.027.

    Article  CAS  Google Scholar 

  24. Chung JK, Lee YJ, Kim SK, Jeong JM, Lee DS, Lee MC. Comparison of [18F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl Med Commun. 2004;25:11–7.

    Article  CAS  Google Scholar 

  25. Higashi K, Ueda Y, Sakurai A, Mingwang X, Xu L, Murakami M, et al. Correlation of Glut-1 glucose transporter expression with [(18)F]FDG uptake in non-small cell lung cancer. Eur J Nucl Med. 2000;27:1778–85. https://doi.org/10.1007/s002590000367.

    Article  CAS  PubMed  Google Scholar 

  26. van Berkel A, Vriens D, Visser EP, Janssen MJR, Gotthardt M, Hermus A, et al. Metabolic subtyping of pheochromocytoma and paraganglioma by (18)F-FDG pharmacokinetics using dynamic PET/CT scanning. J Nucl Med : official publication, Society of Nuclear Medicine. 2019;60:745–51. https://doi.org/10.2967/jnumed.118.216796.

    Article  CAS  Google Scholar 

  27. de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands). 2007;55:79–87. https://doi.org/10.1016/j.lungcan.2006.08.018.

    Article  Google Scholar 

  28. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med : official publication, Society of Nuclear Medicine. 1999;40:1771–7.

    CAS  Google Scholar 

  29. Minn H, Leskinen-Kallio S, Lindholm P, Bergman J, Ruotsalainen U, Teras M, et al. [18F]fluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin. J Comput Assist Tomogr. 1993;17:115–23.

    Article  CAS  Google Scholar 

  30. Minn H, Zasadny KR, Quint LE, Wahl RL. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology. 1995;196:167–73. https://doi.org/10.1148/radiology.196.1.7784562.

    Article  CAS  PubMed  Google Scholar 

  31. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O'Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med. 1999;26:22–30.

    Article  CAS  Google Scholar 

  32. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med : official publication, Society of Nuclear Medicine. 1978;19:1154–61.

    CAS  Google Scholar 

  33. Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJ, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med. 2000;27:731–43.

    Article  CAS  Google Scholar 

  34. Sundaram SK, Freedman NM, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al. Simplified kinetic analysis of tumor 18F-FDG uptake: a dynamic approach. J Nucl Med : official publication, Society of Nuclear Medicine. 2004;45:1328–33.

    CAS  Google Scholar 

  35. McDermott GM, Welch A, Staff RT, Gilbert FJ, Schweiger L, Semple SI, et al. Monitoring primary breast cancer throughout chemotherapy using FDG-PET. Breast Cancer Res Treat. 2007;102:75–84. https://doi.org/10.1007/s10549-006-9316-7.

    Article  CAS  PubMed  Google Scholar 

  36. Sun X, Xiao Z, Chen G, Han Z, Liu Y, Zhang C, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med. 2018;10. https://doi.org/10.1126/scitranslmed.aan8840.

  37. Choi YJ, Cho BC, Jeong YH, Seo HJ, Kim HJ, Cho A, et al. Correlation between (18)f-fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer. Nucl Med Mol Imaging. 2012;46:169–75. https://doi.org/10.1007/s13139-012-0142-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang CT, Yen RF, Cheng MF, Hsu YC, Wei PF, Tsai YJ, et al. Correlation of F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value and EGFR mutations in advanced lung adenocarcinoma. Medical Oncology (Northwood, London, England). 2010;27:9–15. https://doi.org/10.1007/s12032-008-9160-1.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Key R&D Program of China (2018YFC0910601), the National Natural Science Foundation of China (No.81871382), and Starting Fund from Sun Yat-sen University Fifth Affiliated Hospital.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design; the final analysis and writing of the manuscript.

Corresponding authors

Correspondence to Qingdong Cao or Hongjun Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology – Chest.

Electronic supplementary material

ESM. 1

(JPG 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Lin, Z., Xu, Z. et al. Influx rate constant of 18F-FDG increases in metastatic lymph nodes of non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 47, 1198–1208 (2020). https://doi.org/10.1007/s00259-020-04682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04682-5

Keywords

Navigation