Skip to main content

Advertisement

Log in

Safety profiles of beneficial lactic acid bacteria isolated from dairy systems

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to assess the safety aspects of 15 lactic acid bacteria (LAB) strains previously isolated from a dairy environment with relation to their beneficial features. LAB strains were assessed using phenotypic methods according to their production of virulence factors at 25 °C and 37 °C, as well as by examining their potential resistance to 15 antibiotics. Polymerase chain reaction (PCR) was also used to identify the presence of 50 genes associated with virulence factors and antibiotic resistance in the strains. None of the strains presented hemolytic activity or the production of gelatinase, lipase, deoxyribonuclease, or the tested biogenic amines. Based on the disk diffusion assay, all strains were resistant to oxacillin and sulfa/trimethoprim. Further, some were resistant to gentamicin (14), clindamycin (11), vancomycin (9), rifampicin (8), erythromycin (5), tetracycline (4), ampicillin (2), and chloramphenicol (1); no strain was resistant to imipenem. Regarding virulence- and antibiotic-resistance-related genes, 19 out of 50 tested genes were present in some strains; there was a variable association of expression. Based on the obtained data, the isolates presented relatively safe characteristics and behavior, findings that should lead to further studies to assess their potential usage as beneficial cultures in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78

    Article  CAS  Google Scholar 

  2. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, Fakiri EM (2013) Health benefits of probiotics: a review. ISRN Nut 2013:481651. https://doi.org/10.5402/2013/481651

    Article  CAS  Google Scholar 

  3. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A (2013) Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 109(Suppl 2):S35–S50. https://doi.org/10.1017/S0007114512004011

    Article  CAS  PubMed  Google Scholar 

  4. FAO/WHO (2001) Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Córdoba

  5. Fortina MG, Ricci G, Borgo F, Manachini PL, Arends K, Schiwon K, Abajy MY, Grohmann E (2008) A survey on biotechnological potential and safety of the novel Enterococcus species of dairy origin E italicus. Int J Food Microbiol 123(3):204–211. https://doi.org/10.1016/j.ijfoodmicro.2008.01.014

    Article  CAS  PubMed  Google Scholar 

  6. Colombo M, Todorov SD, Eller M, Nero LA (2018) The potential use of probiotic and beneficial bacteria in the Brazilian dairy industry. J Dairy Res 85(4):487–496. https://doi.org/10.1017/S0022029918000845

    Article  CAS  PubMed  Google Scholar 

  7. FAO/WHO (2006) Health and nutritional properties and guidelines for evaluation. FAO Food and Nutrition, Rome Paper 85

    Google Scholar 

  8. Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78(918):216–224. https://doi.org/10.1136/pmj.78.918.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bautista-Gallego J, Arroyo-López FN, Rantsiou K, Jiménez-Díaz R, Garrido-Fernández A, Cocolin L (2013) Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res Int 50(1):135–142. https://doi.org/10.1016/j.foodres.2012.10.004

    Article  CAS  Google Scholar 

  10. Casado Muñoz MC, Benomar N, Lerma LL, Gálvez A, Abriouel H (2014) Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. Int J Food Microbiol 172:110–118. https://doi.org/10.1016/j.ijfoodmicro.2013.11.025

    Article  CAS  Google Scholar 

  11. van Reenen CA, Dicks LMT (2011) Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Arch Microbiol 193(3):157–168. https://doi.org/10.1007/s00203-010-0668-3

    Article  CAS  PubMed  Google Scholar 

  12. Rubio R, Jofré A, Martín B, Aymerich T, Garriga M (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311. https://doi.org/10.1016/j.fm.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  13. Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R (2014) Antibiotic resistance among commercially available probiotics. Food Res Int 57:176–195. https://doi.org/10.1016/j.foodres.2014.01.025

    Article  CAS  Google Scholar 

  14. Snydman DR (2008) The safety of probiotics. Clin Infect Dis 46(Supp 2):S104–S111

    Article  Google Scholar 

  15. Colombo M, Castilho NPA, Todorov SD, Nero LA (2018) Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiol 18(1):219. https://doi.org/10.1186/s12866-018-1356-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Colombo M (2017) Beneficial properties and safety of lactic acid bacteria isolated from the dairy production environment. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  17. Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the North of Portugal. Food Control 21(5):651–656. https://doi.org/10.1016/j.foodcont.2009.10.002

    Article  CAS  Google Scholar 

  18. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41. https://doi.org/10.1016/S0168-1605(99)00152-X

    Article  CAS  PubMed  Google Scholar 

  19. Joosten HMLJ, Northolt MD (1989) Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl Environ Microbiol 55(9):2356–2359

    Article  CAS  Google Scholar 

  20. EUCAST (2019) Antimicrobial susceptibility testing-EUCAST disk diffusion method. EUCAST

  21. EUCAST (2019) Clinical breakpoints and dosing of antibiotics

  22. CLSI (2017) Performance standards for antimicrobial susceptibility testing, 27th edn. CLSI supplement M100, Clinical and Laboratory Standards Institute

  23. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42(10):4473–4479. https://doi.org/10.1128/JCM.42.10.4473-4479.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakayama J, Kariyama R, Kumon H (2002) Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine. Appl Environ Microbiol 68(6):3152–3155

    Article  CAS  Google Scholar 

  25. Martin-Platero AM, Valdivia E, Maqueda M, Martinez-Bueno M (2009) Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. Int J Food Microbiol 132(1):24–32. https://doi.org/10.1016/j.ijfoodmicro.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  26. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635

    Article  CAS  Google Scholar 

  27. Robredo B, Singh KV, Baquero F, Murray BE, Torres C (1999) From vanA Enterococcus hirae to vanA Enterococcus faecium: a study of feed supplementation with avoparcin and tylosin in young chickens. Antimicrob Agents Chemother 43(5):1137–1143

    Article  CAS  Google Scholar 

  28. Costa Y, Galimand M, Leclercq R, Duval J, Courvalin P (1993) Characterization of the chromosomal aac(6′)-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother 37(9):1896–1903. https://doi.org/10.1128/aac.37.9.1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu C, Kariyama R, Daneo-Moore L, Shockman GD (1992) Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. J Bacteriol 174(5):1619–1625

    Article  CAS  Google Scholar 

  30. Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33(1):24–27

    Article  CAS  Google Scholar 

  31. Gevers D, Danielsen M, Huys G, Swings J (2003) Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl Environ Microbiol 69(2):1270–1275

    Article  CAS  Google Scholar 

  32. Barbeyrac B, Dupon M, Rodriguez P, Renaudin H, Bébéar C (1996) A Tn1545-like transposon carries the tet(M) gene in tetracycline resistant strains of Bacteroides ureolyticus as well as Ureaplasma urealyticum but not Neisseria gonorrhoeae. J Antimicrob Chemother 37(2):223–232

    Article  Google Scholar 

  33. Rivas B, Marcobal A, Muñoz R (2005) Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiol Lett 244(2):367–372. https://doi.org/10.1016/j.femsle.2005.02.012

    Article  CAS  Google Scholar 

  34. Favaro L, Basaglia M, Casella S, Hue I, Dousset X, Franco BDGM, Todorov SD (2014) Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese. Food Microbiol 38:228–239

    Article  CAS  Google Scholar 

  35. Kao SJ, Il Y, Clewell DB, Donabedian SM, Zervos MJ, Petrin J, Shaw KJ, Chow JW (2000) Detection of the high-level aminoglycoside resistance gene aph(2″)-Ib in Enterococcus faecium. Antimicrob Agents Chemother 44(10):2876–2879

    Article  CAS  Google Scholar 

  36. Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16(3):430–450

    Article  CAS  Google Scholar 

  37. Van de Klundert JAM, Vliegenthart JS (1993) PCR detection of genes coding for aminoglycoside-modifying enzymes. In: Persing D, Smith T, Tenover T, White T (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, pp 547–552

    Google Scholar 

  38. Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299(5615):2071–2074

    Article  CAS  Google Scholar 

  39. Miele A, Bandera M, Goldstein BP (1995) Use of primers selective for vancomycin resistance genes to determine van genotype in enterococci and to study gene organization in VanA isolates. Antimicrob Agents Chemother 39(8):1772–1778

    Article  CAS  Google Scholar 

  40. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L (1996) Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40(11):2562–2566

    Article  CAS  Google Scholar 

  41. Jensen LB, Frimodt-Moller N, Aarestrup FM (1999) Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett 170(1):151–158. https://doi.org/10.1111/j.1574-6968.1999.tb13368.x

    Article  CAS  PubMed  Google Scholar 

  42. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37(2):127–137. https://doi.org/10.1016/S0732-8893(00)00130-9

    Article  CAS  PubMed  Google Scholar 

  43. Duh R, Singh KV, Malathum K, Murray BE (2001) In vitro activity of 19 antimicrobial agents against enterococci from healthy subjects and hospitalized patients and use of an ace gene probe from Enterococcus faecalis for species identification. Microb Drug Resist 7(1):39–46

    Article  CAS  Google Scholar 

  44. Manson JM, Keis S, Smith JMB, Cook GM (2004) Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob Agents Chemother 48(10):3743–3748

    Article  CAS  Google Scholar 

  45. Adams MR (1999) Safety of industrial lactic acid bacteria. J Biotechnol 68(2):171–178. https://doi.org/10.1016/S0168-1656(98)00198-9

    Article  CAS  PubMed  Google Scholar 

  46. Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J (2018) Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Anal Chem 98:128–142. https://doi.org/10.1016/j.trac.2017.11.001

    Article  CAS  Google Scholar 

  47. Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond M, Entenza JM, Moreillon P, Wind RD, Knol J, Wiertz E, Pot B, Vaughan EE, Kahlmeter G, Goossens H (2008) Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci Technol 19(2):102–114. https://doi.org/10.1016/j.tifs.2007.07.013

    Article  CAS  Google Scholar 

  48. Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P, Penna ALB (2017) In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann Microbiol 67(4):289–301. https://doi.org/10.1007/s13213-017-1258-2

    Article  CAS  Google Scholar 

  49. Pisano MB, Viale S, Conti S, Fadda ME, Deplano M, Melis MP, Deiana M, Cosentino S (2014) Preliminary evaluation of probiotic properties of Lactobacillus strains isolated from sardinian dairy products. Biomed Res Int 2014:9. https://doi.org/10.1155/2014/286390

    Article  CAS  Google Scholar 

  50. Borges S, Barbosa J, Silva J, Teixeira P (2013) Evaluation of characteristics of Pediococcus spp. to be used as a vaginal probiotic. J Appl Microbiol 115(2):527–538. https://doi.org/10.1111/jam.12232

    Article  CAS  PubMed  Google Scholar 

  51. Jeong D, Lee J (2015) Antibiotic resistance, hemolysis and biogenic amine production assessments of Leuconostoc and Weissella isolates for kimchi starter development. LWT - Food Sci Technol 64(2):1078–1084. https://doi.org/10.1016/j.lwt.2015.07.031

    Article  CAS  Google Scholar 

  52. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, Leulier F, Gänzle M, Walter J (2017) Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 41(Supp_1):S27–S48. https://doi.org/10.1093/femsre/fux030

    Article  PubMed  Google Scholar 

  53. Santos KMO, Vieira ADS, Salles HO, Oliveira JS, Rocha CRC, Borges MF, Bruno LM, Franco BDGM, Todorov SD (2015) Safety, beneficial and technological properties of Enterococcus faecium isolated from Brazilian cheeses. Braz J Microbiol 46(1):237–249. https://doi.org/10.1590/s1517-838246120131245

    Article  PubMed  PubMed Central  Google Scholar 

  54. Munoz-Atienza E, Gomez-Sala B, Araujo C, Campanero C, del Campo R, Hernandez P, Herranz C, Cintas L (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13(1):15. https://doi.org/10.1186/1471-2180-13-15

    Article  PubMed  PubMed Central  Google Scholar 

  55. Morovic W, Roper JM, Smith AB, Mukerji P, Stahl B, Rae JC, Ouwehand AC (2017) Safety evaluation of HOWARU® Restore (Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lpc-37, Bifidobacterium animalis subsp. lactis Bl-04 and B. lactis Bi-07) for antibiotic resistance, genomic risk factors, and acute toxicity. Food Chem Toxicol 110:316–324. https://doi.org/10.1016/j.fct.2017.10.037

    Article  CAS  PubMed  Google Scholar 

  56. Imperial ICVJ, Ibana JA (2016) Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front Microbiol 7:1983–1983. https://doi.org/10.3389/fmicb.2016.01983

    Article  PubMed  PubMed Central  Google Scholar 

  57. Courvalin P (2006) Antibiotic resistance: the pros and cons of probiotics. Dig Liver Dis 38:S261–S265. https://doi.org/10.1016/S1590-8658(07)60006-1

    Article  PubMed  Google Scholar 

  58. Verraes C, Van Boxstael S, Van Meervenne E, Van Coillie E, Butaye P, Catry B, de Schaetzen M-A, Van Huffel X, Imberechts H, Dierick K, Daube G, Saegerman C, De Block J, Dewulf J, Herman L (2013) Antimicrobial resistance in the food chain: a review. Int J Environ Res Public Health 10(7):2643–2669. https://doi.org/10.3390/ijerph10072643

    Article  PubMed  PubMed Central  Google Scholar 

  59. Corona F, Martinez JL (2013) Phenotypic resistance to antibiotics. Antibiotics (Basel) 2(2):237–255. https://doi.org/10.3390/antibiotics2020237

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil—financial code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Belo Horizonte, MG, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Augusto Nero or Svetoslav Dimitrov Todorov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Elaine Cristina Pereira de Martinis.

Note

This manuscript was organized based on results obtained by the first author during her Doctorate training, and fully described in her thesis [16].

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The safety aspects of LAB isolated from a dairy environment was evaluated.

• Presence of 49 virulence factors and antibiotic resistance genes was studied.

• Physiological expression of virulence factors, biogenic amine, and antibiotic resistance was tested.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, M., Nero, L.A. & Todorov, S.D. Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. Braz J Microbiol 51, 787–795 (2020). https://doi.org/10.1007/s42770-020-00227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00227-y

Keywords

Navigation