Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 5, 2020

Porins as helpers in mitochondrial protein translocation

  • Alexander Grevel and Thomas Becker ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Mitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.

Acknowledgments

Work included in this study has been performed in partial fulfillment of the requirements for the doctoral thesis of A.G. This work was supported by the Deutsche Forschungsgemeinschaft (BE 4679/2-2, Funder Id: http://dx.doi.org/10.13039/501100001659) and the Excellence Strategy of the German Federal and State Governments (EXC 2189 CIBSS Project ID 390939984).

References

Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., and Kohda, D. (2000). Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560.10.1016/S0092-8674(00)80691-1Search in Google Scholar

Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F.E., Neupert, W., and Nussberger, S. (1999). The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968.10.1083/jcb.147.5.959Search in Google Scholar PubMed PubMed Central

Ahting, U., Thieffry, M., Engelhardt, H., Hegerl, R., Neupert, W., and Nussberger, S. (2001). Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J. Cell Biol. 153, 1151–1160.10.1083/jcb.153.6.1151Search in Google Scholar PubMed PubMed Central

Alconada, A., Kübrich, M., Moczko, M., Hönlinger, A., and Pfanner, N. (1995). The mitochondrial receptor complex: the small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol. Cell Biol. 15, 6196–6205.10.1128/MCB.15.11.6196Search in Google Scholar PubMed PubMed Central

Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L.S., Sakaue, H., Yunoki, K., et al. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401.10.1038/s41586-019-1680-7Search in Google Scholar PubMed

Backes, S., Hess, S., Boos, F., Woellhaf, M.W., Gödel, S., Jung, M., Mühlhaus, T., and Herrmann, J.M. (2018). Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382.10.1083/jcb.201708044Search in Google Scholar PubMed PubMed Central

Baker, M.J., Frazier, A.E., Gulbis, J.M., and Ryan, M.T. (2007). Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol. 17, 456–464.10.1016/j.tcb.2007.07.010Search in Google Scholar PubMed

Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., and Kühlbrandt, W. (2017). Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170, 693–700.10.1016/j.cell.2017.07.012Search in Google Scholar PubMed

Bausewein, T., Naveed, H., Liang, J., and Nussberger, S. (2020). The structure of the TOM core complex in the mitochondrial outer membrane. Biol. Chem. 401. [Epub ahead of print].10.1515/hsz-2020-0104Search in Google Scholar PubMed

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., and Zeth, K. (2008). Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. U.S.A. 105, 15370–15375.10.1073/pnas.0808115105Search in Google Scholar PubMed PubMed Central

Becker, T. and Wagner, T. (2018). Mitochondrial outer membrane channels: emerging diversity in transport processes. Bioassays 40, e1800013.10.1002/bies.201800013Search in Google Scholar PubMed

Becker, L., Bannwarth, M., Meisinger, C., Hill, K., Model, K., Krimmer, T., Casadio, R., Truscott, K.N., Schulz, G.E., Pfanner, N., et al. (2005). Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J. Mol. Biol. 353, 1011–1020.10.1016/j.jmb.2005.09.019Search in Google Scholar PubMed

Becker, T., Guiard, B., Thornton, N., Zufall, N., Stroud, D.A., Wiedemann, N., and Pfanner, N. (2010). Assembly of the mitochondrial protein import channel: role of Tom5 in two-stage interaction of Tom40 with the SAM complex. Mol. Biol. Cell 21, 3106–3113.10.1091/mbc.e10-06-0518Search in Google Scholar

Becker, T., Wenz, L.S., Thornton, N., Stroud, D., Meisinger, C., Wiedemann, N., and Pfanner, N. (2011). Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J. Mol. Biol. 405, 113–124.10.1016/j.jmb.2010.11.002Search in Google Scholar PubMed

Becker, T., Song, J., and Pfanner, N. (2019). Versatility of preprotein transfer from the cytosol to mitochondria. Trends Cell Biol. 29, 534–548.10.1016/j.tcb.2019.03.007Search in Google Scholar PubMed

Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M. (1990). Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science 247, 1233–1236.10.1126/science.1690454Search in Google Scholar PubMed

Blachly-Dyson, E., Song, J., Wolfgang, W.J., Colombini, M., and Forte, M. (1997). Multicopy suppressors of phenotypes resulting from the absence of yeast VDAC encode a VDAC-like protein. Mol. Cell. Biol. 17, 5727–5738.10.1128/MCB.17.10.5727Search in Google Scholar PubMed PubMed Central

Brix, J., Dietmeier, K., and Pfanner, N. (1997). Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735.10.1074/jbc.272.33.20730Search in Google Scholar PubMed

Callegari, S., Richter, F., Chojnacka, K., Jans, D.C., Lorenzi, I., Pacheu-Grau, D., Jakobs, S., Lenz, C., Urlaub, H., Dudek, J., et al. (2016). TIM29 is a subunit of the human carrier translocase required for protein transport. FEBS Letters 590, 4147–4158.10.1002/1873-3468.12450Search in Google Scholar PubMed PubMed Central

Callegari, S., Müller, T., Schulz, C., Lenz, C., Jans, D.C., Wissel, M., Opazo, F., Rizozoli, S.O., Jakobs, S., Urlaub, H., et al. (2019). A MICOS-TIM22 association promotes carrier import into human mitochondria. J. Mol. Biol. 431, 2835–2851.10.1016/j.jmb.2019.05.015Search in Google Scholar PubMed

Campo, M.L., Peixoto, P.M., and Martinez-Caballero, S. (2017). Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J. Bioenerg. Biomembr. 49, 75–99.10.1007/s10863-016-9662-zSearch in Google Scholar PubMed

Chacinska, A., Lind, M., Frazier, A.E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H.E., Truscott, K.N., Guiard, B., et al. (2005). Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829.10.1016/j.cell.2005.01.011Search in Google Scholar PubMed

Chan, N.C. and Lithgow, T. (2008). The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol. Biol. Cell 19, 126–136.10.1091/mbc.e07-08-0796Search in Google Scholar PubMed PubMed Central

Colombini, M. (2012). Mitochondrial outer membrane channels. Chem. Rev. 112, 6373–6387.10.1021/cr3002033Search in Google Scholar PubMed

Dekker, P.J.T., Ryan, M.T., Brix, J., Müller, H., Hönlinger, A., andPfanner, N. (1998). Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell Biol. 18, 6515–6524.10.1128/MCB.18.11.6515Search in Google Scholar PubMed PubMed Central

Dienhart, M.K. and Stuart, R.A. (2008). The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol. Biol. Cell. 19, 3934–3943.10.1091/mbc.e08-04-0402Search in Google Scholar PubMed PubMed Central

Dukanovic, J., Dimmer, K.S., Bonnefoy, N., Krumpe, K., andRapaport, D. (2009). Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37. Mol. Cell. Biol. 29, 5975–5988.10.1128/MCB.00069-09Search in Google Scholar PubMed PubMed Central

Ellenrieder, L., Opaliński, Ł., Becker, L., Krüger, V., Mirus, O., Straub, S.P., Ebell, K., Flinner, N., Stiller, S.B., Guiard, B., et al. (2016). Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun. 7, 13021.10.1038/ncomms13021Search in Google Scholar PubMed PubMed Central

Ellenrieder, L., Dieterle, M.P., Doan, K.N., Mårtensson, C.U.,Floerchinger, A., Campo, M.L., Pfanner, N., and Becker, T. (2019). Dual role of mitochondrial porin in metabolite transport across the outer membrane and protein transfer to the inner membrane. Mol. Cell 73, 1056–1065.10.1016/j.molcel.2018.12.014Search in Google Scholar PubMed

Endo, T., Yamano, K., and Kawano, S. (2011). Structural insight into the mitochondrial protein import system. Biochim. Biophys. Acta 1808, 955–970.10.1016/j.bbamem.2010.07.018Search in Google Scholar PubMed

Esaki, M., Shimizu, H., Ono, T., Yamamoto, H., Kanamori, T.,Nishikawa, S.I., and Endo, T. (2004). Mitochondrial protein import. Requirement of presequence elements and TOM components for precursor binding to the TOM complex. J. Biol. Chem. 279, 45701–45707.10.1074/jbc.M404591200Search in Google Scholar PubMed

Flinner, N., Ellenrieder, L., Stiller, S.B., Becker, T., Schleiff, E., and Mirus, O. (2013). Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim. Biophys. Acta. 1833, 3314–3325.10.1016/j.bbamcr.2013.10.006Search in Google Scholar PubMed

Gabriel, K., Egan, B., and Lithgow, T. (2003). Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22, 2380–2386.10.1093/emboj/cdg229Search in Google Scholar PubMed PubMed Central

Gebert, N., Chacinska, A., Wagner, R., Guiard, B., Koehler, C.M., Rehling, P., Pfanner, N., and Wiedemann, N. (2008). Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase. EMBO Rep. 9, 548–554.10.1038/embor.2008.49Search in Google Scholar PubMed PubMed Central

Gebert, N., Gebert, M., Oeljeklaus, S., von der Malsburg, K., Stroud, D.A., Kulawiak, B., Wirth, C., Zahedi, R.P., Dolezal, P., Wiese, S., et al. (2011). Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol. Cell 44, 811–818.10.1016/j.molcel.2011.09.025Search in Google Scholar PubMed

Gerbeth, C., Schmidt, O., Rao, S., Harbauer, A.B., Mikropoulou, D., Opalińska, M., Guiard, B., Pfanner, N., and Meisinger, C. (2013). Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab. 18, 578–587.10.1016/j.cmet.2013.09.006Search in Google Scholar PubMed

González Montoro, A., Auffarth, K., Hönscher, C., Bohnert, M., Becker, T., Warscheid, B., Reggiori, F., van der Laan, M., Fröhlich, F., and Ungermann, C. (2018). Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell 45, 621–636.10.1016/j.devcel.2018.05.011Search in Google Scholar PubMed

Gornicka, A., Bragoszewski, P., Chroscicki, P., Wenz, L.S., Schulz, C., Rehling, P., and Chacinska, A. (2014). A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Mol. Biol. Cell 25, 3999–4009.10.1091/mbc.e14-06-1155Search in Google Scholar

Grevel, A., Pfanner, N., and Becker, T. (2019). Coupling of import and assembly pathways in mitochondrial biogenesis. Biol. Chem. 401, 117–129.10.1515/hsz-2019-0310Search in Google Scholar PubMed

Hansen, K.G. and Herrmann, J.M. (2019). Transport of proteins into mitochondria. Protein J. 38, 330–342.10.1007/s10930-019-09819-6Search in Google Scholar PubMed

Hansen, K.G., Aviram, N., Laborenz, J., Bibi, C., Meyer, M., Spang, A., Schuldiner, M., and Herrmann, J.M. (2018). An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science 361, 1118–1122.10.1126/science.aar8174Search in Google Scholar PubMed

Harbauer, A.B., Opalińska, M., Gerbeth, C., Herman, J.S., Rao, S., Schönfisch, B., Guiard, B., Schmidt, O., Pfanner, N., and Meisinger, C. (2014). Cell cycle-dependent regulation of mitochondrial preprotein translocase. Science 346, 1109–1113.10.1126/science.1261253Search in Google Scholar PubMed

Hill, K., Model, K., Ryan, M.T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521.10.1038/26780Search in Google Scholar PubMed

Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., and Wagner, G. (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210.10.1126/science.1161302Search in Google Scholar PubMed PubMed Central

Höhr, A.I.C., Lindau, C., Wirth, C., Qiu, J., Stroud, D.A., Kutik, S., Guiard, B., Hunte, C., Becker, T., Pfanner, N., et al. (2018). Membrane protein insertion through a mitochondrial β-barrel gate. Science 359, eaah6834.10.1126/science.aah6834Search in Google Scholar PubMed PubMed Central

Hoppins, S.C. and Nargang, F.E. (2004). The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J. Biol. Chem. 279, 12396–12405.10.1074/jbc.M313037200Search in Google Scholar PubMed

Kang, Y., Baker, M.J., Liem, M., Louber, J., McKenzie, M.,Atukorala, I., Ang, C.S., Keerthikumar, S., Mathivanan, S., and Stojanovski, D. (2016). Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife 5, e1746310.7554/eLife.17463Search in Google Scholar PubMed PubMed Central

Kang, Y., Stroud, D.A., Baker, M.J., De Souza, D.P., Frazier, A.E., Liem, M., Tull, D., Mathivanan, S., McConville, M.J., Thorburn, D.R., et al. (2017). Sengers syndrome-associated mitochondrial acylglycerol kinase is a subunit of the human TIM22 protein import complex. Mol. Cell 67, 457–475.10.1016/j.molcel.2017.06.014Search in Google Scholar PubMed

Kerscher, O., Holder, J., Srinivasan, M., Leung, R.S., and Jensen, R.E. (1997). The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol. 139, 1663–1675.10.1083/jcb.139.7.1663Search in Google Scholar PubMed PubMed Central

Kovermann, P., Truscott, K.N., Guiard, B., Rehling, P., Sepuri, N.B., Müller, H., Jensen, R.E., Wagner, R., and Pfanner, N. (2002). Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol. Cell 9, 363–373.10.1016/S1097-2765(02)00446-XSearch in Google Scholar

Krüger, V., Becker, T., Becker, L., Montilla-Martinez, M., Ellenrieder, L., Vögtle, F.N., Meyer, H.E., Ryan, M.T., Wiedemann, N., Warscheid, B., et al. (2017). Identification of new channels by systematic analysis of the mitochondrial outer membrane. J. Cell Biol. 216, 3485–3495.10.1083/jcb.201706043Search in Google Scholar PubMed PubMed Central

Künkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998). The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.10.1016/S0092-8674(00)81206-4Search in Google Scholar PubMed

Lahiri, S., Chao, J.T., Tavassoli, S., Wong, A.K., Choudhary, V., Young, B.P., Loewen, C.J., and Prinz, W.A. (2014). A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol. 12, e1001969.10.1371/journal.pbio.1001969Search in Google Scholar PubMed PubMed Central

Lauffer, S., Mäbert, K., Czupalla, C., Pursche, T., Hoflack, B., Rödel, G., and Krause-Buchholz, U. (2012). Saccharomyces cerevisiae porin pore forms complexes with mitochondrial outer membrane proteins Om14p and Om45p. J. Biol. Chem. 287, 17447–17458.10.1074/jbc.M111.328328Search in Google Scholar PubMed PubMed Central

Lionaki, E., de Marcos Lousa, C., Baud, C., Vougioukalaki, M., Panayotou, G., and Tokatlidis, K. (2008). The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain. J. Biol. Chem. 283, 15747–15753.10.1074/jbc.M800350200Search in Google Scholar PubMed PubMed Central

Magri, A., Di Rosa, M.C., Orlandi, I., Guarino, F., Reina, S., Guanaccia, M., Morello, G., Spampinato, A., Cavallaro, S., Messina, A., et al. (2019). Deletion of voltage-dependent anion channel 1 knocks mitochondrial down triggering metabolic rewiring in yeast. Cell Mol. Life Sci. doi:10.1007/s00018-019-03342-8.Search in Google Scholar PubMed

Mårtensson, C.U., Priesnitz, C., Song, J., Ellenrieder, L., Doan, K.N., Boos, F., Floerchinger, A., Zufall, N., Oeljeklaus, S., Warscheid, B., et al. (2019). Mitochondrial protein translocation-associated degradation. Nature 569, 679–683.10.1038/s41586-019-1227-ySearch in Google Scholar PubMed

Mehnert, C.S., Rampelt, H., Gebert, M., Oeljeklaus, S., Schrempp, S.G., Kochbeck, L., Guiard, B., Warscheid, B., and van der Laan, M. (2014). The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J. Biol. Chem. 289, 27352–27362.10.1074/jbc.M114.556498Search in Google Scholar PubMed PubMed Central

Meisinger, C., Rissler, M., Chacinska, A., Sanjuán Szklarz, L.K.S., Milenkovic, D., Kozjak, V., Schönfisch, B., Lohaus, C., Meyer, H.E., Yaffe, M.P., et al. (2004). The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71.10.1016/j.devcel.2004.06.003Search in Google Scholar PubMed

Mertins, B., Psakis, G., and Essen, L.O. (2014). Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane. Biol. Chem. 395, 1435–1442.10.1515/hsz-2014-0203Search in Google Scholar PubMed

Messina, A., Reina, S., Guarino, F., and de Pinto, V. (2012). VDAC isoforms in mammals. Biochim. Biophys. Acta 1818, 1466–1476.10.1016/j.bbamem.2011.10.005Search in Google Scholar PubMed

Model, K., Prinz, T., Ruiz, T., Rademacher, M., Krimmer, T., Kühlbrandt, W., Pfanner, N., and Meisinger, C. (2002). Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666.10.1006/jmbi.2001.5365Search in Google Scholar PubMed

Morgenstern, M., Stiller, S.B., Lübbert, P., Peikert, C.D., Dannenmaier, S., Drepper, F., Weil, U., Höß, P., Feuerstein, R., Gebert, M., et al. (2017). Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852.10.1016/j.celrep.2017.06.014Search in Google Scholar PubMed PubMed Central

Müller, C.S., Bildl, W., Haupt, A., Ellenrieder, L., Becker, T., Hunte, C., Fakler, B., and Schulte, U. (2016). Cryo-slicing blue native-mass spectrometry (csBN-MS), a novel technology for high-resolution complexome profiling. Mol. Cell Proteomics 15, 669–681.10.1074/mcp.M115.054080Search in Google Scholar PubMed PubMed Central

Myata, N., Fujii, S., and Kuge, O. (2018). Porin proteins have critical functions in mitochondrial phospholipid metabolism in yeast. J. Biol. Chem. 293, 17593–17605.10.1074/jbc.RA118.005410Search in Google Scholar PubMed PubMed Central

Neupert, W. (2015). A perspective on transport of proteins into mitochondria: a myriad of open questions. J. Mol. Biol. 427, 1135–1158.10.1016/j.jmb.2015.02.001Search in Google Scholar PubMed

Opaliński, Ł., Song, J., Priesnitz, C., Wenz, L.S., Oeljeklaus, S.,Warscheid, B., Pfanner, N., and Becker, T. (2018). Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep. 25, 2036–2043.10.1016/j.celrep.2018.10.083Search in Google Scholar PubMed PubMed Central

Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123.10.1016/j.cell.2008.06.016Search in Google Scholar PubMed PubMed Central

Palmieri, F. and Pierri, C.L. (2010). Mitochondrial metabolite transport. Essays Biochem. 47, 37–52.10.1042/bse0470037Search in Google Scholar PubMed

Papić, D., Elbaz-Alon, Y., Koerdt, S.N., Leopold, K., Worm, D., Jung, M., Schuldiner, M., and Rapaport, D. (2013). The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol. Cell Biol. 33, 4083–4094.10.1128/MCB.00227-13Search in Google Scholar PubMed PubMed Central

Paschen, S.A., Waizenegger, T., Stan, T., Preuss, M., Cyrklaff, M., Hell, K., Rapaport, D., and Neupert, W. (2003). Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426, 862–866.10.1038/nature02208Search in Google Scholar PubMed

Peixoto, P.M.V., Grana, F., Roy, T.J., Dunn, C.D., Flores, M., Jensen, R.E., and Campo, M.L. (2007). Awaking TIM22, a dynamic ligand-gated channel for protein insertion in the mitochondrial inner membrane. J. Biol. Chem. 282, 18694–18701.10.1074/jbc.M700775200Search in Google Scholar PubMed

Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284.10.1038/s41580-018-0092-0Search in Google Scholar PubMed PubMed Central

Qiu, J., Wenz, L.S., Zerbes, R.M., Oeljeklaus, S., Bohnert, M., Stroud, D.A., Wirth, C., Ellenrieder, L., Thornton, N., Kutik, S., et al. (2013). Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154, 596–608.10.1016/j.cell.2013.06.033Search in Google Scholar PubMed

Rampelt, H., Sucec, I., Bersch, B., Horten, P., Perschil, I., Martinou, J.C., van der Laan, M., Wiedemann, N., Schanda, P., and Pfanner, N. (2020). The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biol. 18, 2.10.1186/s12915-019-0733-6Search in Google Scholar PubMed PubMed Central

Rao, S., Schmidt, O., Harbauer, A., Schönfisch, B., Guiard, B., Pfanner, N., and Meisinger, C. (2012). Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell 23, 1618–1627.10.1091/mbc.e11-11-0933Search in Google Scholar

Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H.E., Kühlbrandt, W., Wagner, R., Truscott, K.N., and Pfanner, N. (2003). Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751.10.1126/science.1080945Search in Google Scholar PubMed

Ryan, M.T., Müller, H., and Pfanner, N. (1999). Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane. J. Biol. Chem. 274, 20619–20627.10.1074/jbc.274.29.20619Search in Google Scholar PubMed

Sakaue, H., Shiota, T., Ishizaka, N., Kawano, S., Tamura, Y., Tan, K.S., Imai, K., Motono, C., Hirokawa, T., Taki, K., et al. (2019). Porin associates with Tom22 to regulate the mitochondrial protein gate assembly. Mol. Cell 73, 1044–105510.1016/j.molcel.2019.01.003Search in Google Scholar PubMed

Schmitt, S., Ahting, U., Eichacker, L., Granvogl, B., Go, N.E., Nargang, F.E., Neupert, W., and Nussberger, S. (2005). Role of Tom5 in maintaining the structural stability of the TOM complex of mitochondria. J. Biol. Chem. 280, 14499–14506.10.1074/jbc.M413667200Search in Google Scholar PubMed

Schmidt, O., Harbauer, A.B., Rao, S., Eyrich, B., Zahedi, R.P., Stojanovski, D., Schönfisch, B., Guiard, B., Sickmann, A., Pfanner, N., et al. (2011). Regulation of mitochondrial protein import by cytosolic kinases. Cell 144, 227–239.10.1016/j.cell.2010.12.015Search in Google Scholar PubMed

Sherman, E.L., Go, N.E., and Nargang, F.E. (2005). Functions of the small proteins in the TOM complex of Neurospora crassa. Mol. Biol. Cell 16, 4172–4182.10.1091/mbc.e05-03-0187Search in Google Scholar PubMed PubMed Central

Shiota, T., Imai, K., Qiu, J., Hewitt, V.L., Tan, K., Shen, H.H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., et al. (2015). Molecular architecture of the active mitochondrial protein gate. Science 349, 1544–1548.10.1126/science.aac6428Search in Google Scholar PubMed

Shoshan-Barmatz, V., Ben-Hail, D., Admoni, L., Krelin, Y., and Tripathi, S.S. (2015). The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim. Biophys. Acta 1848, 2547–2575.10.1016/j.bbamem.2014.10.040Search in Google Scholar PubMed

Suzuki, H., Kadowaki, T., Maeda, M., Sasaki, H., Nabekura, J., Sakaguchi, M., and Mihara, K. (2004). Membrane-embedded C-terminal segment of rat mitochondrial TOM40 constitutes protein-conducting pore with enriched β-structure. J. Biol. Chem. 279, 50619–50629.10.1074/jbc.M408604200Search in Google Scholar PubMed

Thornton, N., Stroud, D.A., Milenkovic, D., Guiard, B., Pfanner, N., and Becker, T. (2010). Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of α-helical outer membrane proteins. J. Mol. Biol. 396, 540–549.10.1016/j.jmb.2009.12.026Search in Google Scholar PubMed

Truscott, K.N., Wiedemann, N., Rehling, P., Müller, H., Meisinger, C., Pfanner, N., and Guiard, B. (2002). Mitochondrial import of the ADP/ATP carrier: the essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol. Cell. Biol. 22, 7780–7789.10.1128/MCB.22.22.7780-7789.2002Search in Google Scholar PubMed PubMed Central

Tucker, K. and Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26, 1158–1166.10.1038/s41594-019-0339-2Search in Google Scholar PubMed PubMed Central

Ujwal, R., Cascio, D., Colletier, J.P., Faham, S., Zhang, J., Toro, L., Ping, P., and Abramson, J. (2008). The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 105, 17742–17747.10.1073/pnas.0809634105Search in Google Scholar PubMed PubMed Central

van der Laan, M., Wiedemann, N., Mick, D.U., Guiard, B., Rehling, P., and Pfanner, N. (2006). A role for Tim21 in membrane potential-dependent preprotein sorting in mitochondria. Curr. Biol. 16, 2271–2276.10.1016/j.cub.2006.10.025Search in Google Scholar PubMed

van Wilpe, S., Ryan, M.T., Hill, K., Maarse, A.C., Meisinger, C., Brix, J., Dekker, P.J.T., Moczko, M., Wagner, R., Meijer, M., et al. (1999). Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485–489.10.1038/46802Search in Google Scholar PubMed

Vasiljev, A., Ahting, U., Nargang, F.E., Go, N.E., Habib, S.J., Kozany, C., Panneels, V., Sinning, I., Prkisch, H., Neupert, W., et al. (2004). Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol. Biol. Cell 15, 1445–1458.10.1091/mbc.e03-05-0272Search in Google Scholar PubMed PubMed Central

von der Malsburg, K., Müller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., Loniewska-Lwowska, A., Wiese, S., Rao, S., Milenkovic, D., et al. (2011). Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell, 21, 694–707.10.1016/j.devcel.2011.08.026Search in Google Scholar PubMed

Vukotic, M., Nolte, H., König, T., Saita, S., Ananjew, M., Krüger, M., Tatsuta, T., and Langer, T. (2017). Acylglycerol kinase mutated in Sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria. Mol. Cell 67, 471–490.10.1016/j.molcel.2017.06.013Search in Google Scholar PubMed

Wagner, K., Gebert, N., Guiard, B., Brandner, K., Truscott, K.N., Wiedemann, N., Pfanner, N., and Rehling, P. (2008). The assembly pathway of the mitochondrial carrier translocase involves four preprotein translocases. Mol. Cell Biol. 28, 4251–4260.10.1128/MCB.02216-07Search in Google Scholar PubMed PubMed Central

Webb, C.T., Gorman, M.A., Lazarou, M., Ryan, M.T., and Gulbis, J.M. (2006). Crystal structure of the mitochondrial chaperone TIM9-10 reveals a six-bladed α-propeller. Mol Cell. 21, 123–133.10.1016/j.molcel.2005.11.010Search in Google Scholar PubMed

Weidberg, H. and Amon, A. (2018). MitoCPR – a surveillance pathway that protects mitochondria in response to protein import stress. Science 360, eaan4146.10.1126/science.aan4146Search in Google Scholar PubMed PubMed Central

Weinhäupl, K., Lindau, C., Hessel, A., Wang, Y., Schütze, C., Jores, T., Melchionda, L., Schönfisch, B., Kalbacher, H., Bersch, B., et al. (2018). Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell, 175, 1365–1379.10.1016/j.cell.2018.10.039Search in Google Scholar PubMed PubMed Central

Wenz, L.S., Ellenrieder, L., Qiu, J., Bohnert, M., Zufall, N., van der Laan, M., Pfanner, N., Wiedemann, N., and Becker, T. (2015). Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. J. Cell. Biol. 210, 1047–1054.10.1083/jcb.201504119Search in Google Scholar PubMed PubMed Central

Wiedemann, N., Pfanner, N., and Ryan, M.T. (2001). The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960.10.1093/emboj/20.5.951Search in Google Scholar PubMed PubMed Central

Wiedemann, N., Kozjak, V., Chacinska, A., Schönfisch, B., Rospert, S., Ryan, M.T., Pfanner, N., and Meisinger, C. (2003). Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565–571.10.1038/nature01753Search in Google Scholar PubMed

Wiedemann, N., van der Laan, M., Hutu, D.P., Rehling, P., andPfanner, N. (2007). Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J. Cell Biol. 179, 1115–1122.10.1083/jcb.200709087Search in Google Scholar PubMed PubMed Central

Wu, Y. and Sha, B. (2006). Crystal structure of yeast outer membrane translocon member Tom70p. Nat. Struct. Mol. Biol. 13, 589–593.10.1038/nsmb1106Search in Google Scholar PubMed

Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., Terao, K., Ushida, M., Esaki, M., Nishikawa, S., Yoshihisa, T., et al. (2009). Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31635–31646.10.1074/jbc.M109.041756Search in Google Scholar PubMed PubMed Central

Yamano, K., Yatsukawa, Y., Esaki, M., Hobbs, A.E.A., Jensen, R.E., and Endo, T. (2008). Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283, 3799–3807.10.1074/jbc.M708339200Search in Google Scholar PubMed

Yamano, K., Tanaka-Yamano, S., and Endo, T. (2010). Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep. 11, 187–193.10.1038/embor.2009.283Search in Google Scholar PubMed PubMed Central

Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50.10.1016/S0092-8674(02)01250-3Search in Google Scholar PubMed

Received: 2019-12-18
Accepted: 2020-01-15
Published Online: 2020-06-05
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0438/html
Scroll to top button