Skip to main content
Log in

Hyperuricemia is associated with a lower glomerular filtration rate in pediatric sickle cell disease patients

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Sickle cell nephropathy (SCN) is a progressive disease that contributes significant morbidity and mortality in sickle cell disease (SCD), yet it remains poorly understood. Hyperuricemia negatively impacts renal function in the non-sickle cell population but is understudied in SCD.

Methods

We performed a cross-sectional analysis of the first 78 pediatric SCD patients enrolled in a cohort study. The mechanism of development of hyperuricemia (defined, serum uric acid (UA) ≥ 5.5 mg/dL) was characterized as a result of either UA overproduction or inefficient renal excretion by the Simkin index and fractional clearance of urate (FCU) equations. Associations between hyperuricemia and albuminuria or estimated glomerular filtration rate (eGFR) were determined by linear regression.

Results

The prevalence of hyperuricemia in this young population (mean age 11.6 ± 3.77 years) was 34.2%. Only 1 hyperuricemic participant overproduced UA by Simkin index, while 62.5% were inefficient renal excretors of UA (FCU < 4%). Hyperuricemia was associated with a significant decrease in average eGFR, −27 ml/min/1.73m2 below normouricemia (mean eGFR 151.6 ± 40.32), p = 0.0122. Notably, the previously accepted association between decline of eGFR with age is significantly modified by hyperuricemia stratification, where hyperuricemia explains 44% of the variance in eGFR by age (R2 = 0.44, p = 0.0004) and is nonsignificant in normouricemia (R2 = 0.07, p = 0.0775).

Conclusion

These findings indicate that hyperuricemia may be associated with early eGFR decline in SCN. This association must be further characterized in prospective cohort studies in SCN, and hyperuricemia must be investigated as a potential therapeutic target for SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2

Similar content being viewed by others

References

  1. Naik RP, Derebail VK (2017) The spectrum of sickle hemoglobin-related nephropathy: from sickle cell disease to sickle trait. Expert Rev Hematol 10:1087–1094. https://doi.org/10.1080/17474086.2017.1395279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nath KA, Hebbel RP (2015) Sickle cell disease: renal manifestations and mechanisms. Nat Rev Nephrol 11:161–171. https://doi.org/10.1038/nrneph.2015.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Powars DR (1991) Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med 115:614. https://doi.org/10.7326/0003-4819-115-8-614

    Article  CAS  PubMed  Google Scholar 

  4. Gosmanova EO, Zaidi S, Wan JY, Adams-Graves PE (2014) Prevalence and progression of chronic kidney disease in adult patients with sickle cell disease. J Investig Med 62:804–807. https://doi.org/10.1097/01.JIM.0000446836.75352.72

    Article  CAS  PubMed  Google Scholar 

  5. Lapsia V, Johnson RJ, Dass B, Shimada M, Kambhampati G, Ejaz NI, Arif AA, Ejaz AA (2012) Elevated uric acid increases the risk for acute kidney injury. Am J Med 125:302.e9–302.e17. https://doi.org/10.1016/j.amjmed.2011.06.021

    Article  CAS  Google Scholar 

  6. Fan S, Zhang P, Wang AY, Wang X, Wang L, Li G, Hong D (2019) Hyperuricemia and its related histopathological features on renal biopsy. BMC Nephrol 20:95. https://doi.org/10.1186/s12882-019-1275-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Braga TT, Forni MF, Correa-Costa M, Ramos RN, Barbuto JA, Branco P, Castoldi A, Hiyane MI, Davanso MR, Latz E, Franklin BS, Kowaltowski AJ, Camara NOS (2017) Soluble uric acid activates the NLRP3 inflammasome. Sci Rep 7:39884. https://doi.org/10.1038/srep39884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feig DI (2012) The role of uric acid in the pathogenesis of hypertension in the young. J Clin Hypertens 14:346–352. https://doi.org/10.1111/j.1751-7176.2012.00662.x

    Article  CAS  Google Scholar 

  9. Sautin YY, Johnson RJ (2008) Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 27:608–619

    Article  CAS  Google Scholar 

  10. Rodenbach KE, Schneider MF, Furth SL, Moxey-Mims MM, Mitsnefes MM, Weaver DJ, Warady BA, Schwartz GJ (2015) Hyperuricemia and progression of CKD in children and adolescents: the chronic kidney disease in children (CKiD) cohort study. Am J Kidney Dis 66:984–992. https://doi.org/10.1053/j.ajkd.2015.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsu S-P (2004) Serum uric acid levels show a “J-shaped” association with all-cause mortality in haemodialysis patients. Nephrol Dial Transplant 19:457–462. https://doi.org/10.1093/ndt/gfg563

    Article  CAS  PubMed  Google Scholar 

  12. Ghane Sharbaf F, Assadi F (2018) Effect of allopurinol on the glomerular filtration rate of children with chronic kidney disease. Pediatr Nephrol 33:1405–1409. https://doi.org/10.1007/s00467-018-3943-1

    Article  PubMed  Google Scholar 

  13. Sircar D, Chatterjee S, Waikhom R, Golay V, Raychaudhury A, Chatterjee S, Pandey R (2015) Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 66:945–950. https://doi.org/10.1053/j.ajkd.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  14. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, Arroyo D, Luño J (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5:1388–1393. https://doi.org/10.2215/CJN.01580210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka K, Nakayama M, Kanno M, Kimura H, Watanabe K, Tani Y, Hayashi Y, Asahi K, Terawaki H, Watanabe T (2015) Renoprotective effects of febuxostat in hyperuricemic patients with chronic kidney disease: a parallel-group, randomized, controlled trial. Clin Exp Nephrol 19:1044–1053. https://doi.org/10.1007/s10157-015-1095-1

    Article  CAS  PubMed  Google Scholar 

  16. Oh TR, Choi HS, Kim CS, Bae EH, Ma SK, Sung SA, Kim YS, Oh KH, Ahn C, Kim SW (2019) Hyperuricemia has increased the risk of progression of chronic kidney disease: propensity score matching analysis from the KNOW-CKD study. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-43241-3

    Article  CAS  Google Scholar 

  17. Soletsky B, Feig DI (2012) Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension 60:1148–1156. https://doi.org/10.1161/HYPERTENSIONAHA.112.196980

    Article  CAS  PubMed  Google Scholar 

  18. Feig DI, Soletsky B, Johnson RJ (2008) Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension. JAMA 300:924. https://doi.org/10.1001/jama.300.8.924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsuda H, Kawada N, Kaimori J, Kitamura H, Moriyama T, Rakugi H, Takahara S, Isaka Y (2012) Febuxostat suppressed renal ischemia–reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun 427:266–272. https://doi.org/10.1016/j.bbrc.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  20. Sezai A, Soma M, Nakata K, Osaka S, Ishii Y, Yaoita H, Hata H, Shiono M (2015) Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients with chronic kidney disease (NU-FLASH trial for CKD). J Cardiol 66:298–303. https://doi.org/10.1016/j.jjcc.2014.12.017

    Article  PubMed  Google Scholar 

  21. George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5:265–272

    Article  CAS  Google Scholar 

  22. Rothschild BM, Sienknecht CW, Kaplan SB, Spindler JS (1980) Sickle cell disease associated with uric acid deposition disease. Ann Rheum Dis 39:392–395. https://doi.org/10.1136/ard.39.4.392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ball GV, Sorensen LB (1970) The pathogenesis of hyperuricemia and gout in sickle cell anemia. Arthritis Rheum 13:846–848. https://doi.org/10.1002/art.1780130614

    Article  CAS  PubMed  Google Scholar 

  24. Diamond HS (1979) The natural history of urate overproduction in sickle cell anemia. Ann Intern Med 90:752. https://doi.org/10.7326/0003-4819-90-5-752

    Article  CAS  PubMed  Google Scholar 

  25. Maahs DM, Caramori L, Cherney DZI, Galecki AT, Gao C, Jalal D, Perkins BA, Pop-Busui R, Rossing P, Mauer M, Doria A (2013) Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. Curr Diab Rep 13:550–559. https://doi.org/10.1007/s11892-013-0381-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shatat IF, Abdallah RT, Sas DJ, Hailpern SM (2012) Serum uric acid in US adolescents: distribution and relationship to demographic characteristics and cardiovascular risk factors. Pediatr Res 72:95–100. https://doi.org/10.1038/pr.2012.47

    Article  CAS  PubMed  Google Scholar 

  27. McPherson Yee M, Jabbar SF, Osunkwo I, Clement L, Lane PA, Eckman JR, Guasch A (2011) Chronic kidney disease and albuminuria in children with sickle cell disease. Clin J Am Soc Nephrol 6:2628–2633. https://doi.org/10.2215/CJN.01600211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yee ME, Lane PA, Archer DR, Joiner CH, Eckman JR, Guasch A (2018) Losartan therapy decreases albuminuria with stable glomerular filtration and permselectivity in sickle cell anemia. Blood Cells Mol Dis 69:65–70. https://doi.org/10.1016/j.bcmd.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Ruiz F, Calabozo M, Erauskin GG, Ruibal A, Herrero-Beites AM (2002) Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 47:610–613. https://doi.org/10.1002/art.10792

    Article  CAS  PubMed  Google Scholar 

  30. Simkin PA (2003) New standards for uric acid excretion and evidence for an inducible transporter: letter to the editor & reply. Arthritis Rheum 49:735–736. https://doi.org/10.1002/art.11376

    Article  PubMed  Google Scholar 

  31. Kaskel F, Furth SL, Mak RH, Munoz A, Warady BA, Schneider MF, Schwartz GJ (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/asn.2008030287

    Article  PubMed  PubMed Central  Google Scholar 

  32. Valente MAE, Hillege HL, Navis G, Voors AA, Dunselman PHJM, van Veldhuisen DJ, Damman K (2014) The chronic kidney disease epidemiology collaboration equation outperforms the modification of diet in renal disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur J Heart Fail 16:86–94. https://doi.org/10.1093/eurjhf/hft128

    Article  CAS  PubMed  Google Scholar 

  33. Suliman ME, Johnson RJ, García-López E, Qureshi AR, Molinaei H, Carrero JJ, Heimbürger O, Bárány P, Axelsson J, Lindholm B, Stenvinkel P (2006) J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis 48:761–771. https://doi.org/10.1053/j.ajkd.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  34. Lebensburger JD, Aban I, Pernell B, Kasztan M, Feig DI, Hilliard LM, Askenazi DJ (2019) Hyperfiltration during early childhood precedes albuminuria in pediatric sickle cell nephropathy. Am J Hematol 94:417–423. https://doi.org/10.1002/ajh.25390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Children’s Hospital Foundation Research Scholar Award Grant to Cristin Kaspar.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Cristin Kaspar and Isidora Beach. The first draft of the manuscript was written by Cristin Kaspar, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cristin D. W. Kaspar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict(s) of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaspar, C.D.W., Beach, I., Newlin, J. et al. Hyperuricemia is associated with a lower glomerular filtration rate in pediatric sickle cell disease patients. Pediatr Nephrol 35, 883–889 (2020). https://doi.org/10.1007/s00467-019-04432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04432-2

Keywords

Navigation