Skip to main content
Log in

Quorum quenching potential of Enterococcus faecium QQ12 isolated from gastrointestinal tract of Oreochromis niloticus and its application as a probiotic for the control of Aeromonas hydrophila infection in goldfish Carassius auratus (Linnaeus 1758)

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Quorum quenching (QQ), the obstruction of quorum sensing, is the most attractive way to break down the N-acyl-homoserine lactones (AHL) molecules. This work was focused at isolating AHL degrading bacteria from gastrointestinal tract of Oreochromis niloticus, with abilities appropriate for use as probiotic in aquaculture. The presence of an autoinducer inactivation (aiiA) homolog gene and AHL inactivation assay showed that Enterococcus faecium QQ12, which was one among the 20 isolates, could rapidly degrade synthetic C6-HSL in vitro and hampered violacein production by Chromobacterium violaceum. It had excellent biodegrading ability of natural N-AHL produced by Aeromonas hydrophila, suggesting that it can be used as a potential quencher bacterium for disrupting the virulence of A. hydrophila. It was susceptible to all the five antibiotics tried out. The isolate grew well at pH 3.0–7.0, was resistant to high level of bile salts (0–0.9%) and 0.5% of phenol. QQ12 also exhibited high degree of auto-aggregation and co-aggregation, confirming that it possessed good probiotic attributes. Goldfish fed diet incorporated with 108 and 1010 CFU g−1 of the QQ12 for 30 days showed 76.66–86.66% survival when challenged with A. hydrophila. The study indicates that Enterococcus faecium QQ12 could be used as a non-antibiotic feed additive in aquaculture to control bacterial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angka SL, Lam TJ, Sin YM (1995) Some virulence characteristics of Aeromonas hydrophila in walking catfish (Clarias gariepinus). Aquaculture 130:103–112. https://doi.org/10.1016/0044-8486(94)00216-B

    Article  Google Scholar 

  2. Rahman MH, Suzuki S, Kawai K (2001) The effect of temperature on Aeromonas hydrophila infection in goldfish, Carassius auratus. J Appl Ichthyol 17:282–285. https://doi.org/10.1046/j.1439-0426.2001.00291.x

    Article  Google Scholar 

  3. Truchado P, Lopez GF, Gil MI, Tomas BFA, Allende A (2009) Quorum sensing inhibitory and antimicrobial activities of honeys and the relationship with individual phenolics. Food Chem 115:1337–1344

    Article  CAS  Google Scholar 

  4. Mangwani N, Dash H, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:202–208

    Article  Google Scholar 

  5. Abudoleh S, Mahasneh A (2017) Anti-quorum sensing activity of substances isolated from wild berry associated bacteria. Avicenna J Med bBiotechnol 9:32–38

    Google Scholar 

  6. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. PNAS USA 97:3526–3531. https://doi.org/10.1073/pnas.060023897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479. https://doi.org/10.1016/j.tibtech.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  8. Cam DTV, Nhan DT, Ceuppens S, Hao NV, Dierckens K, Wille M, Sorgeloos P, Bossier P (2009) Effect of N–acyl homoserine lactone–degrading enrichment cultures on Macrobrachium rosenbergii larviculture. Aquaculture 294:5–13. https://doi.org/10.1016/j.aquaculture.2009.05.015

    Article  CAS  Google Scholar 

  9. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum sensing dependent bacterial infection by N-acyl homoserine lactonase. Nature 411:813–817. https://doi.org/10.1038/35081101

    Article  CAS  PubMed  Google Scholar 

  10. Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99:4638–4643. https://doi.org/10.1073/pnas.022056699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin YH, Xu JL, Hu J, Wang SL, Ong JR (2003) Acyl-homoserine lactone acylase from ralstonia strain XJ12B represent a novel and potent class of quorum quenching enzymes. Mol Microbiol 47:849–860. https://doi.org/10.1046/j.1365-2958.2003.03351.x

    Article  PubMed  Google Scholar 

  12. Akhter N, Wu B, Memon AM, Mohsin M (2015) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immun 45:733–741

    Article  CAS  Google Scholar 

  13. Irianto A, Austin B (2002) Probiotics in aquaculture. J FishDis 25:633–642

    Google Scholar 

  14. Nhan DT, Cam DTV, Wille M, Defoirdt T, Bossier P, Sorgeloos P (2010) Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J Appl Microbiol 109:1007–1016. https://doi.org/10.1111/j.1365-2672.2010.04728.x

    Article  CAS  PubMed  Google Scholar 

  15. Chu W, Zhou S, Zhu W, Zhuang X (2014) Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Sci Rep 4:1–6. https://doi.org/10.1038/srep05446

    Article  CAS  Google Scholar 

  16. Vinoj G, Vaseeharan B, Thomas S, Spiers AJ, Shanthi S (2014) Quorum quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits vibrio biofilm formation in vitro and reduces shrimp intestinal colonization and mortality. Mar Biotechnol 16:707–715. https://doi.org/10.1007/s10126-014-9585-9

    Article  CAS  Google Scholar 

  17. Tinh NTN, Gunasekara RAYSA, Boon N, Dierckens K, Sorgeloos P, Bossier P (2007) N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures. FEMS Microbiol Ecol 62:45–53

    Article  CAS  PubMed  Google Scholar 

  18. Tinh NTN, Yen VHN, Dierckens K, Sorgeloos P, Bossier P (2008) An acyl homsoerine lactone-degrading microbial community improves the survival of first feeding turbot larvae (Scophthalmus maximus L.). Aquaculture 285:56–62

    Article  CAS  Google Scholar 

  19. Defoirdt T, Loan DT, Delsen BA, Schryver PD, Sorgeloos P, Boon N, Bossier P (2011) N-acylhomoserine lactone-degrading Bacillus strains isolated from aquaculture animals. Aquaculture 311:258–260

    Article  CAS  Google Scholar 

  20. Chu W, Lu F, Zhu W, Kang C (2010) Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. J Appl Microbiol 110:202–208. https://doi.org/10.1111/j.1365-2672.2010.04872.x

    Article  CAS  PubMed  Google Scholar 

  21. Boopathi S, Selvakumar N, Sivakumar G (2017) Quorum quenching potentials of probiotic Enterococcus durans Lab38 against methicillin resistant Staphylococcus aureus. Asian J Pharm Clin Res 10:445–450. https://doi.org/10.22159/ajpcr.2017.v10i4.17039

    Article  CAS  Google Scholar 

  22. Wang YB, Tian ZQ, Yao JT, Li WF (2008) Effect of probiotics, Enterococcus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277:203–207

    Article  Google Scholar 

  23. Krummenauer D, Abreu PC, Lara G, Poersch L, Encarnacao P, Wasielesky W Jr (2009) The effect of probiotic in Litopenaeus vannamei biofloc technology culture system contaminated with Vibrio parahaemolyticus. World Aquaculture Conference, Mexico

    Google Scholar 

  24. Sun YZ, Yang HL, Ma RL, Song K, Li JS (2012) Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper Epinephelus coioides. Aquac Nutr 18:281–289. https://doi.org/10.1111/j.1365-2095.2011.00894.x

    Article  CAS  Google Scholar 

  25. Erkkila S, Petaja E (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci 55:297–300. https://doi.org/10.1016/S0309-1740(99)00156-4

    Article  CAS  PubMed  Google Scholar 

  26. Hyronimus B, Marrec C, Sassi AH, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197. https://doi.org/10.1016/S0168-1605(00)00366-4

    Article  CAS  PubMed  Google Scholar 

  27. Chan KG, Yin WF, Sam CK, Koh CL (2009) A novel medium for the isolation of N-acylhomoserine lactone-degrading bacteria. J Ind Microbiol Biotechnol 36:247–251. https://doi.org/10.1007/s10295-008-0491-x Epub 2008 Oct 23

    Article  CAS  PubMed  Google Scholar 

  28. Ludwig W, Schleifer KH, Whitman WB (2009) Bergey’s manual of systematic bacteriology, 2nd edn, Vol. 3, 594–624

  29. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standards. NCCLS document M100-S23, CLSI, Wayne, 2013

  30. Chan KG, Tiew SZ, Ng CC (2007) Rapid isolation method of soil bacilli and screening of their quorum quenching activity. AsPac J Mol Biol Biotechnol 15:153–156

    Google Scholar 

  31. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, auto aggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  32. Handley PS, Harty DWS, Wyatt JE, Brown CR, Doran JP, Gibbs ACC (1987) A comparison of the adhesion, co aggregation and cell-surface hydrophobicity properties of fibrillar and fimbriate strains of Streptococcus salivarius. J Gen Microbiol 133:3207–3217. https://doi.org/10.1099/00221287-133-11-3207

    Article  CAS  PubMed  Google Scholar 

  33. Molina L, Constantinescu F, Michel L, Reimmann C, Duly B, De Fago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81. https://doi.org/10.1016/S0168-6496(03)00125-9

    Article  CAS  PubMed  Google Scholar 

  34. Martinez MS, Uyttendaele M, Rajkovic A, Nadal P, Debevere J (2007) Degradation of N-acyl-L-homoserine lactones by Bacillus cereus in culture media and pork extract. J Appl Environ Microbiol 73:2329–2332. https://doi.org/10.1128/AEM.01993-06

    Article  CAS  Google Scholar 

  35. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281. https://doi.org/10.1128/jb.179.17.5271-5281.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Galaz AG, Morales RP, Cinco MD, Felix EA (2004) Resistance of Enterococcus strains isolated from pigs to gastrointestinal tract and antagonistic effect against Escherichia coli K88. Rev Latinoam Microbiol 46:5–11

    Google Scholar 

  37. Marciakova M, Simonova M, Laukova A (2004) Probiotic properties of Enterococcus faecium EF9296 strain isolated from silage. Acta Vet Brno 73:513–519. https://doi.org/10.2754/avb200473040513

    Article  Google Scholar 

  38. Saelim K, Sohsomboon N, Kaewsuwan S, Maneerat S (2012) Probiotic properties of Enterococcus faecium CE5-1 producing a bacteriocin-like substance and its antagonistic effect against antibiotic-resistant enterococci in vitro. Czech J Anim Sci 57:529–539

    Article  Google Scholar 

  39. Salma H, Abu Hafsa A, Mendonca B, Brehm-Stecher AA, Hassan SA, Ibrahim K (2015) Probiotic potential and antimicrobial activity of Enterococcus faecium isolated from chicken caecal and fecal samples. IJMRHS 9:378–382

    Google Scholar 

  40. Welliton GF, Tania CP, Fabricio MD, Frank L, Eduardo L, Cupertino B, Leandro P (2017) Gastrointestinal tract pH measurement in juveniles Pacu Piaractus mesopotamicus (Characiformes: Characidae). Pan-Am J Aquat Sci 12:254–258

    Google Scholar 

  41. Suskovic J, Brkic B, Matosic S, Maric V (1997) Lactobacillus acidophilus M92 as potential probiotic strain. Milchwissenschaft 52:430–435

    CAS  Google Scholar 

  42. Hoier E (1992) Use of probiotic starter cultures in dairy products. In: In The 25th Annual Convention. Australian Institute of Food Science Technology, Sydney

    Google Scholar 

  43. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. https://doi.org/10.5713/ajas.15.0849

    Article  CAS  Google Scholar 

  44. Jelena R, Natasa J (2015) Probiotic properties and safety assessment of lactic acid bacteria isolated from kajmak. Biol Nyssana 6:81–89

    Google Scholar 

  45. Garcia CT, Korany AM, Bustos I, de CLP G, Requena T, Pelaez C (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50. https://doi.org/10.1016/j.foodres2014.01.010

    Article  Google Scholar 

  46. Blagoeva G, Gotcheva V, Angelov A (2014) Aggregation and co-aggregation abilities of potentially probiotic amylolytic lactic acid bacteria strains. In Proceedings of the ENGIHR Conference 2014 by the ENGIHR project of the European Science Foundation

  47. Peres CM, Alves M, Hernandez-Mendoza A, Moreira L, Silva S, Bronze MR (2014) Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT 59:234–246

    Article  CAS  Google Scholar 

  48. Chang CI, Liu WY (2002) An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing edwardsiellosis in cultured European eel, Anguilla anguilla L. J Fish Dis 25:311–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Haridas Vadassery.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Statement of ethical approval

The present research involving fish was carried out in strict accordance with the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA). The protocol was reviewed and approved by the institutional animal ethics committee of Kerala University of Fisheries and Ocean Studies, India. All dissection was performed under tricaine methanesulfonate (Sigma) (100 mg L−1) anesthesia and all efforts were made to minimize suffering.

Additional information

Responsible Editor: Waldir P. Elias.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadassery, D.H., Pillai, D. Quorum quenching potential of Enterococcus faecium QQ12 isolated from gastrointestinal tract of Oreochromis niloticus and its application as a probiotic for the control of Aeromonas hydrophila infection in goldfish Carassius auratus (Linnaeus 1758). Braz J Microbiol 51, 1333–1343 (2020). https://doi.org/10.1007/s42770-020-00230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00230-3

Keywords

Navigation