Skip to main content
Log in

Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Vitiligo is a chronic, autoimmune destruction of melanocytes, resulting in progressively expanding depigmented skin patches. Severity of the disorder, which affects approximately 1% of humans, may be mitigated using topical corticosteroids combined with phototherapy; along with other clinical strategies; however, no definitive cures are currently available. Here, the capacity of apigenin, a plant-derived aglycone, to inhibit oxidative stress–mediated melanocyte depletion in vitro using a PIG3V vitiligo perilesional melanocyte cell model is evaluated. PIG3V cells, treated with selected doses of apigenin, were challenged with H2O2, then assessed for viability and the oxidative stress–related parameters: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) by enzyme-linked immunoabsorbent assay (ELISA). Additionally, expression of nuclear factor erythroid 2p45 (NF-E2)–related factor 2 (Nrf2) and downstream targets was detected using Western blotting. Outcomes demonstrated that compared with negative control cultures, apigenin-treated cells exhibited enhanced viability. Likewise, apigenin enhanced expression of the cellular anti-oxidants SOD, CAT, and GSH-Px, but inhibited production of MDA, an oxidative stress biomarker. Interestingly, the expression and nuclear localization of the Nrf2 transcription factor, an important regulator oxidative stress and its downstream target genes, was significantly increased by apigenin treatment. Apigenin influence on Nrf2 was further validated by experiments demonstrating that Nrf2 knockdown cells failed to exhibit significant apigenin-mediated effects on cell viability and oxidative stress. Apigenin’s non-toxicity and ability to affect multiple oxidative stress–related parameters through its effects on Nrf2 signaling in melanocytes suggests that it may prove to be a valuable therapeutic tool in long-term management of vitiligo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal D, Shajil E, Marfatia Y, Begum R (2004) Study on the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res 17:289–294

    Article  Google Scholar 

  • Andueza A, García-Garzón A, de Galarreta MR, Ansorena E, Iraburu MJ, López-Zabalza MJ, Martínez-Irujo JJ (2015) Oxidation pathways underlying the pro-oxidant effects of apigenin. Free Radic Biol Med 87:169–180

    Article  CAS  Google Scholar 

  • Boissy RE, Manga P (2004) On the etiology of contact/occupational vitiligo. Pigment Cell Res 17:208–214

    Article  CAS  Google Scholar 

  • Chang Y, Li S, Guo W, Yang Y, Zhang W, Zhang Q, He Y, Yi X, Cui T, An Y, Song P, Jian Z, Liu L, Li K, Wang G, Gao T, Wang L, Li C (2017) Simvastatin protects human melanocytes from H2O2-induced oxidative stress by activating Nrf2. J Investig Dermatol 137:1286–1296

    Article  CAS  Google Scholar 

  • Chernov VM, Chernova OA, Mouzykantov AA, Lopukhov LV, Trushin MV (2018) Mycoplasmas and novel HO-1 inducers: recent advances. Curr Pharm Des 24:2236–2240. https://doi.org/10.2174/1381612824666180716170128

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Yu W, Li X, Zhou F, Zhang W, Shen Q, Li J, Zhang C, Shen P (2017) Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol 136:136–149

    Article  CAS  Google Scholar 

  • Fried L, Arbiser JL (2008) The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell Melanoma Res 21:117–122

    Article  CAS  Google Scholar 

  • Gavalas NG, Akhtar S, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH (2006) Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochem Biophys Res Commun 345:1586–1591

    Article  CAS  Google Scholar 

  • Guan CP, Zhou MN, Xu AE, Kang KF, Liu JF, Wei XD, Li YW, Zhao DK, Hong WS (2008) The susceptibility to vitiligo is associated with NF-E2-related factor2 (Nrf2) gene polymorphisms: a study on Chinese Han population. Exp Dermatol 17:1059–1062

    Article  CAS  Google Scholar 

  • Halder RM, Chappell JL (2009) Vitiligo update. Semin Cutan Med Surg 28:86–92

    Article  CAS  Google Scholar 

  • He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 3:94–104. https://doi.org/10.4239/wjd.v3.i5.94

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y et al (2017) Dysregulated autophagy increased melanocyte sensitivity to H 2 O 2-induced oxidative stress in vitiligo. Sci Rep 7:42394

    Article  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  CAS  Google Scholar 

  • Jian Z, Li K, Liu L, Zhang Y, Zhou Z, Li C, Gao T (2011) Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J Investig Dermatol 131:1420–1427

    Article  CAS  Google Scholar 

  • Jian Z et al (2014) Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J Investig Dermatol 134:2221–2230

    Article  CAS  Google Scholar 

  • Jimbow K, Chen H, Park JS, Thomas P (2001) Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol 144:55–65

    Article  CAS  Google Scholar 

  • Kang P, Zhang W, Chen X, Yi X, Song P, Chang Y, Zhang S, Gao T, Li C, Li S (2018) TRPM2 mediates mitochondria-dependent apoptosis of melanocytes under oxidative stress. Free Radic Biol Med 126:259–268

    Article  CAS  Google Scholar 

  • Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49

    Article  CAS  Google Scholar 

  • Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN (2011) Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol 82:1073–1078. https://doi.org/10.1016/j.bcp.2011.07.065

    Article  CAS  PubMed  Google Scholar 

  • Köhle C, Bock KW (2006) Activation of coupled Ah receptor and Nrf2 gene batteries by dietary phytochemicals in relation to chemoprevention. Biochem Pharmacol 72:795–805

    Article  Google Scholar 

  • Li B, Birt DF (1996) In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm Res 13:1710–1715

    Article  CAS  Google Scholar 

  • Li W, Suwanwela NC, Patumraj S (2016) Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc Res 106:117–127. https://doi.org/10.1016/j.mvr.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Lu SS, Wang AX, Qi XY, Zhao D, Wang ZH, Man MQ, Tu CX (2011) Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling. J Dermatol Sci 63:10–16. https://doi.org/10.1016/j.jdermsci.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud F, Abul H, Al-Saleh Q, Haines D, Burleson J, Morgan G (1998) Peripheral T-cell activation in non-segmental vitiligo. J Dermatol 25:637–640

    Article  CAS  Google Scholar 

  • Mahmoud F, Abul H, Haines D, Al-Saleh C, Khajeji M, Whaley K (2002) Decreased total numbers of peripheral blood lymphocytes with elevated percentages of CD4+ CD45RO+ and CD4+ CD25+ of T-helper cells in non-segmental vitiligo. J Dermatol 29:68–73

    Article  Google Scholar 

  • Mahmoud F, Haines D, Abul H, Abu-Donia M (2006) Neuroimmune processes contributing to pathogenesis of vitiligo. Rev Int Serv Sante Forces Armees 79:113–119

    Google Scholar 

  • Maresca V, Roccella M, Roccella F, Camera E, del Porto G, Passi S, Grammatico P, Picardo M (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Investig Dermatol 109:310–313

    Article  CAS  Google Scholar 

  • Merfort I, Heilmann J, Hagedorn-Leweke U, Lippold B (1994) In vivo skin penetration studies of camomile flavones. Pharmazie 49:509–511

    CAS  PubMed  Google Scholar 

  • Natarajan VT, Singh A, Kumar AA, Sharma P, Kar HK, Marrot L, Meunier JR, Natarajan K, Rani R, Gokhale RS (2010) Transcriptional upregulation of Nrf2-dependent phase II detoxification genes in the involved epidermis of vitiligo vulgaris. J Investig Dermatol 130:2781–2789

    Article  CAS  Google Scholar 

  • Paredes-Gonzalez X, Fuentes F, Su Z-Y, Kong A-NT (2014) Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P+ cells through epigenetics modifications. AAPS J 16:727–735

    Article  CAS  Google Scholar 

  • Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol 30:233–245

    CAS  PubMed  Google Scholar 

  • Qiu L, Song Z, Setaluri V (2014) Oxidative stress and vitiligo: the Nrf2–ARE signaling connection. J Investig Dermatol 134:2074–2076

    Article  CAS  Google Scholar 

  • Schallreuter KU, Salem MA, Gibbons NC, Maitland DJ, Marsch E, Elwary SM, Healey AR (2012) Blunted epidermal l-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 2: epidermal H2O2/ONOO−-mediated stress in vitiligo hampers indoleamine 2, 3-dioxygenase and aryl hydrocarbon receptor-mediated immune response signaling. FASEB J 26:2471–2485

    Article  CAS  Google Scholar 

  • Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978

    Article  CAS  Google Scholar 

  • Simon JD, Peles D, Wakamatsu K, Ito S (2009) Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment cell & melanoma research 22:563–579

    Article  CAS  Google Scholar 

  • Takekoshi S, Nagata H, Kitatani K (2014) Flavonoids enhance melanogenesis in human melanoma cells. Tokai J Exp Clin Med 39:116–121

    PubMed  Google Scholar 

  • Tanaka Y, Aleksunes LM, Yeager RL, Gyamfi MA, Esterly N, Guo GL, Klaassen CD (2008) NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J Pharmacol Exp Ther 325:655–664

    Article  CAS  Google Scholar 

  • Wang Q-Q, Cheng N, Yi W-B, Peng S-M, Zou X-Q (2014) Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg Med Chem 22:1515–1521

    Article  CAS  Google Scholar 

  • Wenzel P, Kossmann S, Munzel T, Daiber A (2017) Redox regulation of cardiovascular inflammation - Immunomodulatory function of mitochondrial and Nox-derived reactive oxygen and nitrogen species. Free Radic Biol Med 109:48–60. https://doi.org/10.1016/j.freeradbiomed.2017.01.027

    Article  CAS  PubMed  Google Scholar 

  • Whitton ME et al (2015) Interventions for vitiligo. Cochrane Database Syst Rev

  • Xie H, Zhou F, Liu L, Zhu G, Li Q, Li C, Gao T (2016) Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci 81:3–9

    Article  CAS  Google Scholar 

  • Xu X, Li M, Chen W, Yu H, Yang Y, Hang L (2016) Apigenin attenuates oxidative injury in ARPE-19 cells thorough activation of Nrf2 pathway. Oxidative Med Cell Longev 2016

  • Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141. https://doi.org/10.1016/j.brainres.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  • Yildirim M, Baysal V, Inaloz H, Can M (2004) The role of oxidants and antioxidants in generalized vitiligo at tissue level. J Eur Acad Dermatol Venereol 18:683–686

    Article  CAS  Google Scholar 

  • Zeng C, Zhong P, Zhao Y, Kanchana K, Zhang Y, Khan ZA, Chakrabarti S, Wu L, Wang J, Liang G (2015) Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-kappaB both in vitro and in vivo. J Mol Cell Cardiol 79:1–12. https://doi.org/10.1016/j.yjmcc.2014.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Scientific Research Projects of Weifang Health Care Commission (wfwsjk_2019_215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Tu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, J., Zhao, G. et al. Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway. Cell Stress and Chaperones 25, 277–285 (2020). https://doi.org/10.1007/s12192-020-01071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01071-7

Keywords

Navigation