Skip to main content
Log in

Metagenomic analyses uncover the differential effect of azide treatment on bacterial community structure by enriching a specific Cyanobacteria present in a saline-alkaline environmental sample

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Treatment of environmental samples under field conditions may require the application of chemical preservatives, although their use sometimes produces changes in the microbial communities. Sodium azide, a commonly used preservative, is known to differentially affect the growth of bacteria. Application of azide and darkness incubation to Isabel soda lake water samples induced changes in the structure of the bacterial community, as assessed by partial 16S rRNA gene pyrosequencing. Untreated water samples (WU) were dominated by gammaproteobacterial sequences accounting for 86%, while in the azide-treated (WA) samples, this group was reduced to 33% abundance, and cyanobacteria-related sequences became dominant with 53%. Shotgun sequencing and genome recruitment analyses pointed to Halomonas campanensis strain LS21 (genome size 4.07 Mbp) and Synechococcus sp. RS9917 (2.58 Mbp) as the higher recruiting genomes from the sequence reads of WA and WU environmental libraries, respectively, covering nearly the complete genomes. Combined treatment of water samples with sodium azide and darkness has proven effective on the selective enrichment of a cyanobacterial group. This approach may allow the complete (or almost-complete) genome sequencing of Cyanobacteria from metagenomic DNA of different origins, and thus increasing the number of the underrepresented cyanobacterial genomes in the databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgments

DML and HRS acknowledge to the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) for fellowships numbers 291062 Becas Mixtas de Movilidad en el Extranjero Programme and 710228 Estancias Sabática al Extranjero Programme, respectively. We specially thank Dr. Antonio J. Fernández-González and Mario R. Mestre for their valuable help with drawings of the recruitment plots.

Funding

This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (research grant BIO2017-82244-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Ramírez-Saad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 150 kb)

ESM 2

(PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-Garrido, J.F., Martínez-Abarca, F., Montiel-Lugo, D. et al. Metagenomic analyses uncover the differential effect of azide treatment on bacterial community structure by enriching a specific Cyanobacteria present in a saline-alkaline environmental sample. Int Microbiol 23, 467–474 (2020). https://doi.org/10.1007/s10123-020-00119-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-020-00119-z

Keywords

Navigation