Skip to main content
Log in

DNA-based materials as chemical reactors for synthesis of metal nanoparticles

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

In this minireview we highlight a recent progress in preparation of DNA-based matrices that can be used as reactors for templating of inorganic nanomaterials and, in particular, highlight catalytic applications of such hybrid materials. We also discuss advantages and disadvantages of DNA utilization as a material and outline prospects of DNA-based technologies in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Liu and N. Nishi, Chem. Soc. Rev. 37 (12), 2745 (2008).

    Article  CAS  Google Scholar 

  2. H. Zinchenko and S. Sakai, and S. Murata, J. Hazard. Mater. 168 (1), 38 (2009).

    Article  CAS  Google Scholar 

  3. Y. Liu, M. Murayama, and M. Matsunaga, and N. Nishi, Int. J. Biol. Macromol. 35 (3–4), 193 (2005).

    Article  CAS  Google Scholar 

  4. X. D. Liu, Y. Murayama, M. Yamada, M. Nomizu, M. Matsunaga, and N. Nishi, Int. J. Biol. Macromol. 32 (3–5), 121 (2003).

    Article  CAS  Google Scholar 

  5. T. Takeshima, L. Sun, Y. Q. Wang, Y. Yamada, N. Nishi, T. Yonezawa, and B. Fugetsu, Polym. J. 46 (1), 36 (2014).

    Article  CAS  Google Scholar 

  6. T. Umeno and M. Maeda, Anal. Chim. Acta 365 (1–3), 101 (1998).

    Article  CAS  Google Scholar 

  7. M. Yamada and T. Sugiyama, Polym. J. 40 (4), 327 (2008).

    Article  CAS  Google Scholar 

  8. T. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura, J. Am. Chem. Soc. 120 (24) 6165 (1998).

    Article  CAS  Google Scholar 

  9. Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, Appl. Phys. Lett. 81 (8), 1372 (2002).

    Article  CAS  Google Scholar 

  10. C. M. Niemeyer, Angew. Chem. Int. Ed. 36 (6), 585 (1997).

    Article  CAS  Google Scholar 

  11. Materials Science of DNA, Ed. by J.-I. Jin and J. G. Grote (CRC, Boca Raton, FL, 2012).

  12. N. C. Seeman, Nature 421 (6921), 427 (2003).

    Article  Google Scholar 

  13. R. F. Service, Science 277 (5329), 1036 (1997).

    Article  CAS  Google Scholar 

  14. A. Turberfield, Phys. World 16 (3), 43 (2003).

    Article  CAS  Google Scholar 

  15. Y. M. Kwon, C. H. Lee, D. H. Choi, and J. I. Jin, J. Mater. Chem. 19 (10), 1353 (2009).

    Article  CAS  Google Scholar 

  16. J. Anastassopoulou, J. Mol. Struct. 651, 19 (2003).

  17. I. Sissoeff, J. Grisvard, and E. Guille, Prog. Biophys. Mol. Biol. 31 (2), 165 (1976).

    CAS  Google Scholar 

  18. Y. Takahashi, K. Kondo, A. Miyaji, Y. Watanabe, Q. H. Fan, T. Honma, and K. Tanaka, PLoS One 9 (12), e114858 (2014).

  19. Metallization of Polymers 2, Ed. by E. Sacher (Kluwer Academic; Plenum Publ., New York, 2002).

  20. O. E. Litmanovich and I. M. Papisov, Polym. Sci., Ser. A 41 (11), 1824 (1999).

    CAS  Google Scholar 

  21. G. Y. Ostaeva, A. G. Bogdanov, and I. M. Papisov, Polym. Sci., Ser. B 48 (2), 101 (2006).

    Article  Google Scholar 

  22. O. E. Litmanovich, G. Y. Ostaeva, V. S. Tatarinov, A. G. Bogdanov, and I. M. Papisov, Polym. Sci., Ser. B 52 (7–8), 397 (2010).

    Article  Google Scholar 

  23. I. W. Hamley, Nanotechnology 14 (10), R39 (2003).

    Article  CAS  Google Scholar 

  24. R. M. Crooks, M. Q. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Acc. Chem. Res. 34 (3), 181 (2001).

    Article  CAS  Google Scholar 

  25. R. W. J. Scott, O. M. Wilson, and R. M. Crooks, J. Phys. Chem. B 109 (2), 692 (2005).

    Article  CAS  Google Scholar 

  26. C. D. Mao, W. Q. Sun, and N. C. Seeman, J. Am. Chem. Soc. 121 (23), 5437 (1999).

    Article  CAS  Google Scholar 

  27. P. W. K. Rothemund, Nature 440 (7082), 297 (2006).

    Article  CAS  Google Scholar 

  28. Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, and C. D. Mao, Nature 452 (7184), 198 (2008).

    Article  CAS  Google Scholar 

  29. E. Braun, Y. Eichen, U.Sivan, and G. Ben-Yoseph, Nature 391 (6669), 775 (1998).

  30. A. A. Zinchenko, Polym. Sci., Ser. C 54 (1), 80 (2012).

    Article  CAS  Google Scholar 

  31. D. Catherall, D. Huskisson, S. McAdams, and A. Vijayaraghavan, J. Mater. Chem. C 2 (34), 6895 (2014).

    Article  CAS  Google Scholar 

  32. A. Houltan and S. M. D. Watson, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 107, 21 (2011).

    Article  Google Scholar 

  33. S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, and W. M. Shih, Nature 459 (7245), 414 (2009).

    Article  CAS  Google Scholar 

  34. P. F. Xu, H. Noh, J. H. Lee, D. W. Domaille, M.A.Nakatsuka, A. P. Goodwin, and J. N. Cha, Mater. Today 16 (7–8), 290 (2013).

    Article  CAS  Google Scholar 

  35. J. Richter, M. Mertig, W. Pompe, I. Monch, and H. K. Schackert, Appl. Phys. Lett. 78 (4), 536 (2001).

    Article  CAS  Google Scholar 

  36. Z. X. Deng, Y. Tian, S. H. Lee, A. E. Ribbe, and C. D. Mao, Angew. Chem. Int. Ed. 44 (23), 3582 (2005).

    Article  CAS  Google Scholar 

  37. Z. X. Deng and C. D. Mao, Nano Lett. 3 (11), 1545 (2003).

    Article  CAS  Google Scholar 

  38. S. Y. Pu, A. Zinchenko, and S. Murata, J. Nanosci. Nanotechnol. 12 (1), 635 (2012).

    Article  CAS  Google Scholar 

  39. S. Y. Pu, A. A. Zinchenko, and S. Murata, Langmuir 27 (8), 5009 (2011).

    Article  CAS  Google Scholar 

  40. J. Okay, J. Polym. Sci., Part B: Polym. Phys. 49 (8), 551 (2011).

    Article  CAS  Google Scholar 

  41. F. E. Alemdaroglu and A. Herrmann, Org. Biomol. Chem. 5 (9), 1311 (2007).

    Article  CAS  Google Scholar 

  42. S. H. Um, J. B. Lee, N. Park, S. Y. Kwon, C. C. Umbach, and D. Luo, Nat. Mater. 5 (10), 797 (2006).

    Article  CAS  Google Scholar 

  43. E. J. Cheng, Y. Z. Xing, P. Chen, Y. Yang, Y. W. Sun, D. J. Zhou, L. J. Xu, Q. H. Fan, and D. S. Liu, Angew. Chem., Int. Ed. 48 (41), 7660 (2009).

    Article  CAS  Google Scholar 

  44. T. Yata, Y. Takahashi, M. M. Tan, K. Hidaka, H. Sugiyama, M. Endo, Y. Takakura, and M. Nishikawa, Sci. Rep. 5, 14979 (2015).

    Article  CAS  Google Scholar 

  45. J. Lee, S. M. Peng, D. Y. Yang, Y. H. Roh, H. Funabashi, N. Park, E. J. Rice, L. W. Chen, R. Long, M. M. Wu, and D. Luo, Nat. Nanotechnol. 7 (12), 816 (2012).

    Article  CAS  Google Scholar 

  46. T. Amiya and T. Tanaka, Macromolecules 20 (5), 1162 (1987).

    Article  CAS  Google Scholar 

  47. P. Karacan, H. Cakmak, and O. Okay, J. Appl. Polym. Sci. 128 (5), 3330 (2013).

    Article  CAS  Google Scholar 

  48. D. Costa, M. G. Miguel, and B. Lindman, Adv. Colloid Interface Sci. 158 (1–2), 21 (2010).

    Article  CAS  Google Scholar 

  49. N. Ishizuka, Y. Hashimoto, Y. Matsuo, and K. Ijiro, Colloids Surf., A 284, 440 (2006).

    Article  Google Scholar 

  50. N. Orakdogen, B. Erman, and O. Okay, Macromolecules 43 (3), 1530 (2010).

    Article  CAS  Google Scholar 

  51. F. Topuz and O. Okay, Macromolecules 41 (22), 8847 (2008).

    Article  CAS  Google Scholar 

  52. A. Zinchenko, Y. Miwa, L. I. Lopatina, V. G. Sergeyev, and S. Murata, ACS Appl. Mater. Interfaces 6 (5), 3226 (2014).

    Article  CAS  Google Scholar 

  53. A. Zinchenko, Y. X. Che, S. Taniguchi, L. I. Lopatina, V. G. Sergeyev, and S. Murata, J. Nanopart. Res. 18 (7), 179 (2016).

    Article  Google Scholar 

  54. G. Decher, B. Lehr, K. Lowack, Y. Lvov, and J. Schmitt, Biosens. Bioelectron. 9 (9–10), 677 (1994).

    Article  CAS  Google Scholar 

  55. O. I. Vinogradova, O. V. Lebedeva, K. Vasilev, H. F. Gong, J. Garcia-Turiel, and B. S. Kim, Biomacromolecules 6 (3), 1495 (2005).

    Article  CAS  Google Scholar 

  56. A. Zinchenko, C. Nagahama, and S. Murata, Chem-NanoMat 2 (2), 125 (2016).

    CAS  Google Scholar 

  57. J. Blacklock, G. Z. Mao, D. Oupicky, and H. Mohwald, Langmuir 26 (11), 8597 (2010).

    Article  CAS  Google Scholar 

  58. F. Wang, J. L. Wang, Y. M. Zhai, G. P. Li, D. Li, and S. J. Dong, J. Controlled Release 132 (1), 65 (2008).

    Article  CAS  Google Scholar 

  59. Z. Kang, X. Q. Yan, Y. Zhang, J. Pan, J. Shi, X. H. Zhang, Y. Liu, J. H. Choi, and D. M. Porterfield, ACS Appl. Mater. Interfaces 6 (6), 3784 (2014).

    Article  CAS  Google Scholar 

  60. E. N. Primo, F. A. Gutierrez, M. D. Rubianes, and G. A. Rivas, Electrochim. Acta 182, 391 (2015).

    Article  CAS  Google Scholar 

  61. K. Tanaka and Y. Okahata, J. Am. Chem. Soc. 118 (44), 10679 (1996).

    Article  CAS  Google Scholar 

  62. H. Ohno and N. Nishimura, J. Electrochem. Soc. 148 (4), E168 (2001).

    Article  CAS  Google Scholar 

  63. M. Yamada, K. Kato, M. Nomizu, H. Haruki, K. Ohkawa, H. Yamamoto, and N. Nishi, Bull. Chem. Soc. Jpn. 75 (7), 1627 (2002).

    Article  CAS  Google Scholar 

  64. Y. Miwa, A. Zinchenko, L. I. Lopatina, V. G. Sergeyev, and S. Murata, Polym. Int. 63 (9), 1566 (2014).

    Article  CAS  Google Scholar 

  65. V. Ramtenki, V. D. Anumon, M. V. Badiger, and B. L. V. Prasad, Colloids Surf., A 414, 296 (2012).

    Article  CAS  Google Scholar 

  66. C. H. Zhu, Z. B. Hai, C. H. Cui, H. H. Li, J. F. Chen, and S. H. Yu, Small 8 (6), 930 (2012).

    Article  CAS  Google Scholar 

  67. M. J. Hortiguela, I. Aranaz, M. C. Gutierrez, M. L. Ferrer, and F. del Monte, Biomacromolecules 12 (1), 179 (2011).

    Article  CAS  Google Scholar 

  68. R. Braun, L. A. Babiuk, and S. V. Littel-van den Hurk, J. Gen. Virol. 79, 2965 (1998)

    Article  CAS  Google Scholar 

  69. S. Taniguchi, A. Zinchenko, and S. Murata, Chem. Lett. 45 (6), 610 (2016).

    Article  CAS  Google Scholar 

  70. A. G. Skirtach, A. A. Antipov, D. G. Shchukin, and G. B. Sukhorukov, Langmuir 20 (17), 6988 (2004).

    Article  CAS  Google Scholar 

  71. T. C. Wang, M. F. Rubner, and R. E. Cohen, Langmuir 18 (8), 3370 (2002).

    Article  CAS  Google Scholar 

  72. X. Zhang, G. Y. Zhang, B. D. Zhang, and Z. H. Su, Langmuir 29 (22), 6722 (2013).

    Article  CAS  Google Scholar 

  73. M. Logar, B. Jancar, D. Suvorov, and R. Kostanjsek, Nanotechnology 18 (32), 325601 (2007).

    Article  Google Scholar 

  74. R. R. Xing, T. F. Jiao, K. Ma, G. H. Ma, H. Mohwald, and X. H. Yan, Sci. Rep. 6, 26506 (2016).

    Article  CAS  Google Scholar 

  75. M. C. Daniel and D. Astruc, Chem. Rev. 104 (1), 293 (2004).

    Article  CAS  Google Scholar 

  76. P. Herves, M. Perez-Lorenzo, L. M. Liz-Marzan, J. Dzubiella, Y. Lu, and M. Ballauff, Chem. Soc. Rev. 41 (17), 5577 (2012).

    Article  CAS  Google Scholar 

  77. N. Sahiner, Prog. Polym. Sci. 38 (9), 1329 (2013).

    Article  CAS  Google Scholar 

  78. T. Kiyonaga, Q. L. Jin, H. Kobayashi, and H. Tada, ChemPhysChem 10 (17), 2935 (2009).

    Article  CAS  Google Scholar 

  79. S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S. K. Ghosh, and T. Pal, J. Phys. Chem. C 111 (12), 4596 (2007).

    Article  CAS  Google Scholar 

  80. C. Lin, K. Tao, D. Y. Hua, Z. Ma, and S. H. Zhou, Molecules 18 (10), 12609 (2013).

    Article  CAS  Google Scholar 

  81. A. Zinchenko, S. Taniguchi, and S. Murata, Macromol. Symp. 358 (1), 106 (2015).

    Article  CAS  Google Scholar 

  82. Y. Che, A. Zinchenko, and S. Murata, J. Colloid Interface Sci. 445, 364 (2015).

    Article  CAS  Google Scholar 

  83. Y. Lu, Y. Mei, M. Drechsler, and M. Ballauff, J. Phys. Chem. B 110 (9), 3930 (2006).

    Article  CAS  Google Scholar 

  84. Y. Lu, Y. Mei, M. Drechsler, and M. Ballauff, Angew. Chem., Int. Ed. 45 (5), 813 (2006).

    Article  CAS  Google Scholar 

  85. Y. Lu, S. Proch, M. Schrinner, M. Drechsler, R. Kempe, and M. Ballauff, J. Mater. Chem. 19 (23), 3955 (2009).

    Article  CAS  Google Scholar 

  86. S. Carregal-Romero, N. J.Buurma, J. Perez-Juste, L. M. Liz-Marzan, and P. Herves, Chem. Mater. 22 (10), 3051 (2010).

    Article  CAS  Google Scholar 

  87. N. Yan, J. G. Zhang, Y. Yuan, G. T. Chen, P. J. Dyson, Z. C. Li, and Y. Kou, Chem. Commun. 46 (10), 1631 (2010).

    Article  CAS  Google Scholar 

  88. S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X. H. Guo, M. Ballauff, and Y. Lu, Angew. Chem., Int. Ed. 51 (9), 2229 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Zinchenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchenko, A., Sergeyev, V.G. DNA-based materials as chemical reactors for synthesis of metal nanoparticles. Polym. Sci. Ser. C 59, 18–28 (2017). https://doi.org/10.1134/S1811238217010155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238217010155

Navigation