Skip to main content
Log in

Statistical Properties of a Polymer Globule Formed during Collapse with the Irreversible Coalescence of Units

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Collapse of the polymer chain upon the sharp decrease of solvent quality is studied. During collapse, any pair of polymer units appearing in a sufficiently close vicinity in space has the possibility with a certain probability to form an irreversible crosslink, thereby preventing the interpenetration of chain material between the forming clusters. Globular structures having different spatial chain packing at various scales are obtained by computer simulations. It is shown that the dependence of probability of contact between two monomers in space P(s), where s is a distance between monomers along chain, reproduces a number of characteristic features observed previously in experiments on the analysis of three-dimensional chromatin packing. The cluster analysis of intramolecular contact maps makes it possible to express the hypothesis that there are characteristic discrete hierarchical levels in polymer packing associated with the number-theoretic origin of rare-event statistics and inherent to individual maps of intra- and interchromosomal contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Vol’kenshtein, Configurational Statistics of Polymer Chains (AN SSSR, Moscow, 1959) [in Russian].

    Google Scholar 

  2. T. M. Birshtein and O. B. Ptitsyn, Conformations of Macromolecules (Nauka, Leningrad, 1964) [in Russian].

    Google Scholar 

  3. I. M. Lifshits, Sov. Phys. JETP 28, 1280 (1969).

    Google Scholar 

  4. E. Zhulina, O. Borisov, and T. Birshtein, J. Phys. II 2, 63 (1992).

    CAS  Google Scholar 

  5. A. Polotsky, M. Charlaganov, F. Leermakers, M. Daoud, O. Borisov, and T. Birshtein, Macromolecules 42, 5360 (2009).

    Article  CAS  Google Scholar 

  6. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1982).

    Google Scholar 

  7. A. Yu. Grosberg, S. K. Nechaev, and E. I. Shakhnovich, J. Phys. (Paris) 49, 2095 (1988).

    Article  CAS  Google Scholar 

  8. A. Grosberg, Y. Rabin, S. Havlin, and A. Neer, Europhys. Lett. 23, 373 (1993).

    Article  CAS  Google Scholar 

  9. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker, Science 326, 289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Science 295, 1306 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. K. Polovnikov, S. Nechaev, and M. V. Tamm, Soft Matter 14, 6561 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. K. Polovnikov, M. Gherardi, M. Cosentino-Lagomarsino, and M.V. Tamm, Phys. Rev. Lett. 120, 088101 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. M. Imakaev, S. Nechaev, K. Tchourine, and L. Mirny, Soft Matter 11, 665 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. R. D. Schram, G. T. Barkema, and H. Schiessel, J. Chem. Phys. 138, 224901 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. A. M. Astakhov, V. A. Ivanov, and V. V. Vasilevskaya, Dokl. Phys. Chem. 472, 6 (2017).

    Article  CAS  Google Scholar 

  16. R. K. Sachs, G. van der Engh, B. Trask, H. Yokota, and J. E. Hearst, Proc. Natl. Acad. Sci. U. S. A. 92, 2710 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C. Münkel and J. Langowski, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 5888 (1998).

    Article  Google Scholar 

  18. J. Ostashevsky, Mol. Biol. Cell 9, 3031 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Mateos-Langerak, M. Bohn, W. de Leeuw, O. Giromus, E. M. M. Manders, P. J. Verschure, M. H. G. Indemans, H. J. Gierman, D. W. Heerman, R. van Driel, and S. Goetze, Proc. Natl. Acad. Sci. U. S. A. 106, 3812 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. B. V. S. Iyer and G. Arya, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 86, 011911 (2012).

    Article  CAS  Google Scholar 

  21. M. Barbieri, M. Chotalia, J. Fraser, L.-M. Lavitas, J. Dostie, A. Pombo, and M. Nicodemi, Proc. Natl. Acad. Sci. U. S. A. 109, 16173 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. C. C. Fritsch and J. Langowski, Chromosome Res. 19, 63 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. A. Rosa and R. Everaers, PLoS Comput. Biol. 4 (2008).

  24. L. A. Mirny, Cromosome Res. 19, 37 (2011).

    Article  CAS  Google Scholar 

  25. J. D. Halverson, J. Smrek, K. Kremer, and A. Yu. Grosberg, Rep. Prog. Phys. 77, 022601 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. A. Yu. Grosberg, Soft Matter 10, 560 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. A. Rosa and R. Everaers, Phys. Rev. Lett. 112, 118302 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. M. Tamm, L. Nazarov, A. Gavrilov, and A. Chertovich, Phys. Rev. Lett. 114, 178102 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. V. A. Avetisov, L. Nazarov, S. K. Nechaev, and M. V. Tamm, Soft Matter 11, 1019 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren, Nature 485, 7398 (2012).

    Article  CAS  Google Scholar 

  31. E. P. Nora, J. Dekker, and E. Heard, BioEssays 35, 9 (2013).

    Article  CAS  Google Scholar 

  32. S. V. Ulianov, E. E. Khrameeva, A. A. Gavrilov, I.M. Flyamer, P. Kos, E. A. Mikhaleva, A. A. Penin, M. D. Logacheva, M. V. Imakaev, A. Chertovich, M. S. Gelfand, Y. Y. Shevelyov, and S. V. Razin, Genome Res. 26, 1 (2016).

    Article  Google Scholar 

  33. S. S. Rao, M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, and E. L. Aiden, Cell 159, 1665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. L. Sanborn, S. S. Rao, S. C. Huang, N. C. Durand, M. H. Huntley, A. I. Jewett, I. D. Bochkov, D. Chinnappan, A. Cutkosky, J. Li, K. P. Geeting, A. Gnirke, A. Melnikov, D. McKenna, E. K. Stamenova, E. S. Lander, and E. L. Aiden, Proc. Natl. Acad. Sci. U. S. A. 112, E6456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Fudenberg, M. Imakaev, C. Lu, A. Goloborodko, N. Abdennur, and L. A. Mirny, Cell Rep. 15, 2038 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo, Phys. Rev. Lett. 119, 138101 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. O. Shukron and D. Holcman, PLoS Comput. Biol. 13, E1005469 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. V. F. Scolari, G. Mercy, R. Koszul, A. Lesne, and J. Mozziconacci, Phys. Rev. Lett. 121, 057801 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. G. Bunin and M. Kardar, Phys. Rev. Lett. 115 (8), 088303 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  41. A. Khokhlov and S. Nechaev, Phys. Lett. A 112, 156 (1985).

    Article  Google Scholar 

  42. T. Ge, S. Panyukov, and M. Rubinstein, Macromolecules 49 (2), 708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E. Helfand and D. S. Pearson, J. Chem. Phys. 79, 2054 (1983).

    Article  CAS  Google Scholar 

  44. M. E. Cates and J. M. Deutsch, J. Phys. (Paris) 47, 2121 (1986).

    Article  CAS  Google Scholar 

  45. V. Avetisov, P. Krapivsky, and S. Nechaev, J. Phys. A: Math. Theor. 49, 035101 (2016).

    Article  Google Scholar 

  46. V. Kovaleva, Yu. Maximov, S. Nechaev, and O. Valba, J. Stat. Mech.: Theory Exp. 2017, 073402 (2017).

    Article  Google Scholar 

  47. S. Nechaev and K. Polovnikov, Phys.-Usp. 61, 99 (2018).

    Article  CAS  Google Scholar 

  48. S. Nechaev and K. Polovnikov, Soft Matter 13, 1420 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. M. Middendorf, E. Ziv, and C. H. Wiggins, Proc. Natl. Acad. Sci. U. S. A. 102, 3192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. V. Trifonov, L. Pasqualucci, R. Dalla-Favera, and R. Rabadan, Sci. Rep. 1, 191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, “Lomonosov”: Supercomputing at Moscow State University, Contemporary High Performance Computing: From Petascale toward Exascale, Ed. by J. S. Vetter (Chapman and Hall/CRC Computational Science, Boca Raton, 2013), pp. 283–307.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nechaev.

Additional information

Original Russian Text © A.M. Astakhov, S.K. Nechaev, K.E. Polovnikov, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya C, 2018, Vol. 60, No. 2, pp. 120–132.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, A.M., Nechaev, S.K. & Polovnikov, K.E. Statistical Properties of a Polymer Globule Formed during Collapse with the Irreversible Coalescence of Units. Polym. Sci. Ser. C 60 (Suppl 1), 25–36 (2018). https://doi.org/10.1134/S1811238218020017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238218020017

Navigation