Skip to main content
Log in

Dissipation in a System Driven by Two Different Thermostats

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

In an effort to understand phase segregation of polymers driven by activity, i.e., when some of the monomers are driven by an active local energy consuming process, modeled as different monomers interacting with different thermostats, we ask the question: why in such a non-equilibrium system is the average kinetic energy of the monomers not related to the temperature in the usual way via equipartition of energy? This effect turns out to be entirely due to inertia, and to the fact that the dynamics is not completely overdamped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

    Google Scholar 

  2. J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, Science 339, 936 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. A. Y. Grosberg and J.-F. Joanny, Phys. Rev. E: Stat., Nonlinera, Soft Matter Phys. 92, 032118 (2015).

    Article  CAS  Google Scholar 

  4. S. N. Weber, C. A. Weber, and E. Frey, Phys. Rev. Lett. 116, 058301 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. H. Tanaka, A. A. Lee, and M. P. Brenner, Phys. Rev. Fluids 2, 043103 (2017).

    Article  Google Scholar 

  6. H. C. Berg and D. A. Brown, Nature 239, 500 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. P. Galajda, J. Keymer, P. Chaikin, and R. Austin, J. Bacteriol. 189, 8704 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa, M. P. Conte, F. Mecarini, F. De Angelis, and E. Di Fabrizio, Proc. Natl. Acad. Sci. U. S. A. 107, 9541 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. J. Smrek and K. Kremer, Phys. Rev. Lett. 118, 098002 (2017).

    Article  PubMed  Google Scholar 

  10. V. Dotsenko, A. Maciolek, O. Vasilyev, and G. Oshanin, Phys. Rev. E: Stat., Nonlinera, Soft Matter Phys. 87, 062130 (2013).

    Article  CAS  Google Scholar 

  11. C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer, J. Howard, C. F. Schmidt, and F. C. MacKintosh, Science 352, 604 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. G. Szamel, Phys. Rev. E: Stat., Nonlinera, Soft Matter Phys. 90, 012111 (2014).

    Article  CAS  Google Scholar 

  13. V. S. Dotsenko, Introduction to the Theory of Spin Glasses and Neural Networks (World Sci., Singapore, 1994).

    Google Scholar 

  14. V. S. Pande, A. Y. Grosberg, and T. Tanaka, Rev. Mod. Phys. 72, 259 (2000).

    Article  CAS  Google Scholar 

  15. A. V. Chertovich, E. N. Govorun, V. A. Ivanov, P. G. Khalatur, and A. R. Khokhlov, Eur. Phys. J. E: Soft Matter Biol. Phys. 13, 15 (2004).

    Article  CAS  Google Scholar 

  16. R. Exartier and L. Peliti, Phys. Lett. A 261, 94 (1999).

    Article  CAS  Google Scholar 

  17. L. F. Cugliandolo, J. Phys. A -Math. Theor. 44, 483001 (2011).

    Article  CAS  Google Scholar 

  18. A. Crisanti, A. Puglisi, and D. Villamaina, Phys. Rev. E: Stat., Nonlinera, Soft Matter Phys. 85, 061127 (2012).

    Article  CAS  Google Scholar 

  19. Y.-X. Li, Phys. A (Amsterdam, Neth.) 238, 345 (1997).

    Article  Google Scholar 

  20. P. Reimann, R. Bartussek, R. Haussler, and P. Hanggi, Phys. Lett. A 215, 26 (1996).

    Article  CAS  Google Scholar 

  21. E. Heinsalu, M. Patriarca, and F. Marchesoni, Phys. Rev. E: Stat., Nonlinera, Soft Matter Phys. 77, 021129 (2008).

    Article  CAS  Google Scholar 

  22. C.-P. Li, H.-B. Chen, and Z.-G. Zheng, Front. Phys. 12, 120507 (2017).

    Article  Google Scholar 

  23. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

    Article  CAS  Google Scholar 

  24. G. E. Crooks, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 2721 (1999).

    Article  CAS  Google Scholar 

  25. T. Hatano and S. Sasa, Phys. Rev. Lett. 86, 3463 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Grosberg.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosberg, A.Y., Joanny, JF. Dissipation in a System Driven by Two Different Thermostats. Polym. Sci. Ser. C 60 (Suppl 1), 118–121 (2018). https://doi.org/10.1134/S1811238218020108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238218020108

Navigation