Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex

Abstract

The iota toxin produced by Clostridium perfringens type E is a binary toxin comprising two independent polypeptides: Ia, an ADP-ribosyltransferase, and Ib, which is involved in cell binding and translocation of Ia across the cell membrane. Here we report cryo-EM structures of the translocation channel Ib-pore and its complex with Ia. The high-resolution Ib-pore structure demonstrates a similar structural framework to that of the catalytic ϕ-clamp of the anthrax protective antigen pore. However, the Ia-bound Ib-pore structure shows a unique binding mode of Ia: one Ia binds to the Ib-pore, and the Ia amino-terminal domain forms multiple weak interactions with two additional Ib-pore constriction sites. Furthermore, Ib-binding induces tilting and partial unfolding of the Ia N-terminal α-helix, permitting its extension to the ϕ-clamp gate. This new mechanism of N-terminal unfolding is crucial for protein translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM density maps of Ib pores.
Fig. 2: Atomic model of the Ib-pore.
Fig. 3: Atomic model of the Ia-bound Ib-pore.
Fig. 4: Unfolding of Ia N-terminus.
Fig. 5: Comparison of Ia-bound Ib and LF-bound PA.
Fig. 6: Translocation model of Ia via Ib-pore.

Similar content being viewed by others

Data availability

Cryo-EM maps and coordinates were deposited to the Electron Microscopy Data Bank and Protein Data Bank with the accession codes EMDB-0721 and PDB 6KLX for the Ib-pore, EMDB-0713 and PDB 6KLO for the Ia-bound Ib-pore with the short stem, and EMDB-0720 and PDB 6KLW for the Ia-bound Ib-pore with the long stem, respectively.

References

  1. Simpson, L. L., Stiles, B. G., Zepeda, H. H. & Wilkins, T. D. Molecular basis for the pathological actions of Clostridium perfringens iota toxin. Infect. Immun. 55, 118–122 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perelle, S., Gibert, M., Bourlioux, P., Corthier, G. & Popoff, M. R. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect. Immun. 65, 1402–1407 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Popoff, M. R. & Boquet, P. Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem. Biophys. Res. Commun. 152, 1361–1368 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Aktories, K. et al. Botulinum C2 toxin ADP-ribosylates actin. Nature 322, 390–392 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Vandekerckhove, J., Schering, B., Barmann, M. & Aktories, K. Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett. 225, 48–52 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Han, S., Craig, J. A., Putnam, C. D., Carozzi, N. B. & Tainer, J. A. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat. Struct. Biol. 6, 932–936 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Tsuge, H. et al. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J. Mol. Biol. 325, 471–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Tsuge, H. et al. Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proc. Natl Acad. Sci. USA 105, 7399–7404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsurumura, T. et al. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc. Natl Acad. Sci. USA 110, 4267–4272 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Barth, H. et al. Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J. Biol. Chem. 275, 18704–18711 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Blocker, D., Behlke, J., Aktories, K. & Barth, H. Cellular uptake of the Clostridium perfringens binary iota-toxin. Infect. Immun. 69, 2980–2987 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Collier, R. J. & Young, J. A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 19, 45–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Miller, C. J., Elliott, J. L. & Collier, R. J. Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38, 10432–10441 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H. & Liddington, R. C. Crystal structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Lacy, D. B., Wigelsworth, D. J., Melnyk, R. A., Harrison, S. C. & Collier, R. J. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc Natl Acad Sci U S A 101, 13147–13151 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feld, G. K. et al. Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat. Struct. Mol. Biol. 17, 1383–1390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, J., Pentelute, B. L., Collier, R. J. & Zhou, Z. H. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521, 545–549 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krantz, B. A. et al. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309, 777–781 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krantz, B. A., Finkelstein, A. & Collier, R. J. Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J. Mol. Biol. 355, 968–979 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, J., Lang, A. E., Aktories, K. & Collier, R. J. Phenylalanine-427 of anthrax protective antigen functions in both pore formation and protein translocation. Proc. Natl Acad. Sci. USA 105, 4346–4351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Basilio, D., Juris, S. J., Collier, R. J. & Finkelstein, A. Evidence for a proton-protein symport mechanism in the anthrax toxin channel. J. Gen. Physiol. 133, 307–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Das, D. & Krantz, B. A. Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes. Proc. Natl Acad. Sci. USA 113, 9611–9616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Machen, A. J. et al. Asymmetric cryo-EM structure of anthrax toxin protective antigen pore with lethal factor N-Terminal domain. Toxins (Basel) 9, E298 (2017).

  24. Gatsogiannis, C. et al. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495, 520–523 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Meusch, D. et al. Mechanism of Tc toxin action revealed in molecular detail. Nature 508, 61–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Roderer, D., Hofnagel, O., Benz, R. & Raunser, S. Structure of a Tc holotoxin pore provides insights into the translocation mechanism. Proc. Natl Acad. Sci. USA 12, 23083–23090 (2019).

  27. Nagahama, M., Nagayasu, K., Kobayashi, K. & Sakurai, J. Binding component of Clostridium perfringens iota-toxin induces endocytosis in Vero cells. Infect. Immun. 70, 1909–1914 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stiles, B. G., Hale, M. L., Marvaud, J. C. & Popoff, M. R. Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Biochem. J. 367, 801–808 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koehler, T. M. & Collier, R. J. Anthrax toxin protective antigen: low-pH-induced hydrophobicity and channel formation in liposomes. Mol. Microbiol. 5, 1501–1506 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Vernier, G. et al. Solubilization and characterization of the anthrax toxin pore in detergent micelles. Protein Sci. 18, 1882–1895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi, K. et al. Role of Ca2+-binding motif in cytotoxicity induced by Clostridium perfringens iota-toxin. Microb. Pathog. 44, 265–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Marvaud, J. C. et al. Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib. Infect Immun. 69, 2435–2441 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marvaud, J. C. et al. Clostridium perfringens iota toxin. Mapping of the Ia domain involved in docking with Ib and cellular internalization. J. Biol. Chem. 277, 43659–43666 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Knapp, O. et al. Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin. Cell Microbiol. 17, 288–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. Identification of the cellular receptor for anthrax toxin. Nature 414, 225–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Scobie, H. M., Rainey, G. J., Bradley, K. A. & Young, J. A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl Acad. Sci. USA 100, 5170–5174 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mourez, M. et al. Mapping dominant-negative mutations of anthrax protective antigen by scanning mutagenesis. Proc. Natl Acad. Sci. USA 100, 13803–13808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamashita, D. et al. Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat. Commun. 5, 4897 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Finkelstein, A. The channel formed in planar lipid bilayers by the protective antigen component of anthrax toxin. Toxicology 87, 29–41 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Knapp, O., Benz, R., Gibert, M., Marvaud, J. C. & Popoff, M. R. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J. Biol. Chem. 277, 6143–6152 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Basilio, D., Jennings-Antipov, L. D., Jakes, K. S. & Finkelstein, A. Trapping a translocating protein within the anthrax toxin channel: implications for the secondary structure of permeating proteins. J. Gen. Physiol. 137, 343–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wynia-Smith, S. L., Brown, M. J., Chirichella, G., Kemalyan, G. & Krantz, B. A. Electrostatic ratchet in the protective antigen channel promotes anthrax toxin translocation. J. Biol. Chem. 287, 43753–43764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown, M. J., Thoren, K. L. & Krantz, B. A. Role of the alpha clamp in the protein translocation mechanism of anthrax toxin. J. Mol. Biol. 427, 3340–3349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamini, G. & Nestorovich, E. M. Relevance of the alternate conductance states of anthrax toxin channel. Proc. Natl Acad. Sci. USA 114, E2545–E2546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krantz, B. A. Reply to Yamini and Nestorovich: alternate clamped states of the anthrax toxin protective antigen channel. Proc. Natl Acad. Sci. USA 114, E2547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmid, A., Benz, R., Just, I. & Aktories, K. Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine. J. Biol. Chem. 269, 16706–16711 (1994).

    CAS  PubMed  Google Scholar 

  50. Brown, M. J., Thoren, K. L. & Krantz, B. A. Charge requirements for proton gradient-driven translocation of anthrax toxin. J. Biol. Chem. 286, 23189–23199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao-Sheridan, S., Zhang, S. & Collier, R. J. Exchange characteristics of calcium ions bound to anthrax protective antigen. Biochem. Biophys. Res. Commun. 300, 61–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Ernst, K. et al. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin. Sci. Rep. 6, 20301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ernst, K. et al. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells. Sci. Rep. 7, 2724 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Stubbs, S. et al. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol. Lett. 186, 307–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Warny, M. et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Barbut, F. et al. Clinical features of Clostridium difficile–associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J. Med. Microbiol. 54, 181–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Irikura, D. et al. Identification and characterization of a new enterotoxin produced by Clostridium perfringens isolated from food poisoning outbreaks. PLoS One 10, e0138183 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Monma, C. et al. Four foodborne disease outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens. J. Clin. Microbiol. 53, 859–867 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yonogi, S. et al. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect. Immun. 82, 2390–2399 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Anderson, D. M., Sheedlo, M. J., Jensen, J. L. & Lacy, D. B. Structural insights into the transition of Clostridioides difficile binary toxin from prepore to pore. Nat. Microbiol. 5, 102–107 (2019).

  61. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

  64. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta. Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Murata for the initial purification of Ib and JI. Kishikawa for help in cryo-EM analysis. H.T. thanks M. Nagahama and M. Oda for helpful comments on the studies. This work was supported by JSPS KAKENHI grant numbers 18K06170 and 17K15095. This research was partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from the Japan Agency for Medical Research and Development (AMED) under grant number JP19am0101072 (support number 1232). This work was partially supported by grants-in-aid from ‘Nanotechnology Platform’ of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Contributions

T. Yamada, T. Yoshida, A.K. and H.T. participated in the research design and data analyses; T. Yamada prepared the Ib-pore and Ia-bound Ib-pore for cryo-EM; T. Yamada, A.K., K.M. and K.I. performed cryo-EM data acquisition and image processing; T. Yoshida performed atomic-model building, structure refinement, and analyses; all authors contributed to writing the manuscript and H.T. supervised the project.

Corresponding author

Correspondence to Hideaki Tsuge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample preparation of iota toxin.

a, SDS-PAGE (samples are not heat-denatured) showing ethanol-induced Ib oligomerization. After treatment with α-chymotrypsin, Ib monomer was oligomerized by ethanol addition. Oligomerization efficiency reached ~100% in the presence of 10% ethanol. High concentration of ethanol (~20%) caused aggregation, as reflected by the band above the Ib-oligomer. b, Sample preparation for the first data set: top, Density gradient ultracentrifugation. bottom, SDS-PAGE of fractions 21–24, showing that these fractions included the Ib oligomer along with small amounts of Ia. c, Sample preparation for the 2nd data set: top, Density gradient ultracentrifugation of Ib-pore without Ia. bottom, SDS-PAGE of fractions 17–20. Ia was added at three-fold molar excess prior to 2nd data set collection.

Extended Data Fig. 2 Single particle analysis of 1st data (Ib-pore and low resolution Ia-bound Ib-pore).

a, Representative microscope images at pH 5.5 and pH 7.5. Images for analysis were taken only at pH 7.5, due to aggregation at pH 5.5. Scale bar: 100 nm. be, Ib-pore analysis. f, g, Ia-bound Ib-pore analysis. These analyses were performed individually from the same image set (1st data). b, Flow chart of cryo-EM image processing for Ib-pore. c, Final 3D reconstruction map color-coded according to local resolution. d, Angular distribution of particles projected to the map. The angles of the projected particle are shown as 1/7 of a sphere because this analysis was performed with C7 symmetry. e, Gold-standard Fourier shell correlation (FSC) curve of final map and FSC curve for cross-validation between the map and model. f, Flow chart of cryo-EM image processing for Ia-bound Ib-pore. After initial 3D refinement, density around the Ib pore stem was subtracted. g, Final 3D reconstruction map. h, Angular distribution of particles projected to the map.

Extended Data Fig. 3 Single particle analysis of the 2nd data (high resolution Ia-bound Ib-pore).

a, Representative microscope image of the 2nd sample at pH 7.5. Scale bar: 100 nm. b, Flow chart of cryo-EM image processing. c, Final 3D reconstruction map of Ia-bound Ib-pore with a short stem, color-coded according to local resolution. Ia is clearly observed. d, Angular distribution of particles projected to the map shown in c. e, Gold-standard FSC curve of the final map shown in c and FSC curve for cross-validation between the map and model. f, Final 3D reconstruction map of Ia-bound Ib-pore with a long stem, color-coded according to local resolution. Ia is unclearer compared to map c. g, Angular distribution of particles projected to the map shown in f. h, Gold-standard FSC curve of the final map shown in f and FSC curve for cross-validation between the map and model.

Extended Data Fig. 4 Cryo-EM density maps and models.

Representative cryo-EM density maps and models.

Extended Data Fig. 5 Amino acid sequence alignment of domain 1′, 2, and 3.

The secondary structures of Ib-pore and PA-pore (PDB ID: 3J9C) are shown above and below the sequence, respectively. The amino acids numbers including the signal sequences are shown in Ib, CSTb, CDTb, and C2II. The amino acids numbers without the signal sequence are shown in PA. Uniprot IDs: Ib, Q46221; CSTb, o06498; CDTb, o32739; C2II, o86171; PA, P13423.

Extended Data Fig. 6 Comparison between Ib and PA.

a, Ca-binding sites. Cryo-EM density map are overlaid in Ib. The calcium ions are shown as green spheres. Lowercase “m” in parentheses indicates that the main chain forms a coordination bond. b, Domain IV. Cryo-EM density maps and models are shown. PA PDB ID: 3J9C. Extra maps correspond to domain IV. The C-terminus of the Ib domain IV is invisible. c, Amino acid residues comprising inner surfaces of pores. left, A protomer on Ib surface model is colour coded according to the properties of amino acids. right, Schematic representations of amino acid residues consisting of stem regions. d, Cut-away surface electrostatic potential at pH 7.0 and 5.5.

Extended Data Fig. 7 Iota toxin intoxication strategy.

(1) Pro-Ib monomer binds to LSR and is activated by proteolysis, which triggers oligomerization to form the prepore and also the Ib-pore (short) as a metastable state (2) Ia binds to the Ib-prepore and Ib-pore (short) at pH 7.5. (3) Endosome acidic pH triggers conversion of these states to Ib-pore (long) or Ia-bound Ib-pore (long) at pH 5.5.

Supplementary information

Supplementary Information

Supplementary Table 1.

Reporting Summary

Supplementary Video

Unfolding of the Ia N-terminal caused by binding to Ib-pore. A constriction site, the NSQ-loop, changes the conformation when Ia binds to Ib-pore and makes the Ia N-terminal α-helix unfold and tilt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, T., Yoshida, T., Kawamoto, A. et al. Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex. Nat Struct Mol Biol 27, 288–296 (2020). https://doi.org/10.1038/s41594-020-0388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0388-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology