Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MNK1 signaling induces an ANGPTL4-mediated gene signature to drive melanoma progression

Abstract

The BRAFV600E mutation occurs in more than 50% of cutaneous melanomas, and results in the constitutive activation of the mitogen-activated protein kinases (MAPK) pathway. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) are downstream effectors of the activated MAPK pathway, and important molecular targets in invasive and metastatic cancer. Despite the well-known role of MNK1 in regulating mRNA translation, little is known concerning the impact of its aberrant activation on gene transcription. Here, we show that changes in the activity, or abundance, of MNK1 result in changes in the expression of pro-oncogenic and pro-invasive genes. Among the MNK1-upregulated genes, we identify Angiopoietin-like 4 (ANGPTL4), which in turn promotes an invasive phenotype via its ability to induce the expression of matrix metalloproteinases (MMPs). Using a pharmacologic inhibitor of MNK1/2, SEL201, we demonstrate that BRAFV600E-mutated cutaneous melanoma cells are reliant on MNK1/2 for invasion and lung metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MNK1 mediates transcription of downstream targets involved in tumor progression.
Fig. 2: MNK1 promotes melanoma invasion, metastasis and proliferation.
Fig. 3: MNK1 regulates expression of pro-invasive genes in melanoma via the master regulator, ANGPTL4.
Fig. 4: SEL201 treatment decreases invasion in mouse and human melanoma models.
Fig. 5: MNK1-mediated increase in ANGPTL4 through PPAR activation.
Fig. 6: Clinical relevance of MNK1 in melanoma progression.

Similar content being viewed by others

References

  1. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  Google Scholar 

  2. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  Google Scholar 

  3. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  Google Scholar 

  4. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:1270–1.

    Article  Google Scholar 

  5. Domingues B, Lopes JM, Soares P, Populo H. Melanoma treatment in review. Immunotargets Ther. 2018;7:35–49.

    Article  CAS  Google Scholar 

  6. Geller AC, Annas GD. Epidemiology of melanoma and nonmelanoma skin cancer. Semin Oncol Nurs. 2003;19:2–11.

    Article  Google Scholar 

  7. Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.

    Article  Google Scholar 

  8. Zhan Y, Guo J, Yang W, Goncalves C, Rzymski T, Dreas A, et al. MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. J Clin Investig. 2017;127:4179–92.

    Article  Google Scholar 

  9. Robichaud N, Del Rincon SV, Huor B, Alain T, Petruccelli LA, Hearnden J, et al. Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene. 2015;34:2032–42.

    Article  CAS  Google Scholar 

  10. Ramalingam S, Gediya L, Kwegyir-Afful AK, Ramamurthy VP, Purushottamachar P, Mbatia H, et al. First MNKs degrading agents block phosphorylation of eIF4E, induce apoptosis, inhibit cell growth, migration and invasion in triple negative and Her2-overexpressing breast cancer cell lines. Oncotarget. 2014;5:530–43.

    Article  Google Scholar 

  11. Guo Z, Peng G, Li E, Xi S, Zhang Y, Li Y, et al. MAP kinase-interacting serine/threonine kinase 2 promotes proliferation, metastasis, and predicts poor prognosis in non-small cell lung cancer. Sci Rep. 2017;7:10612.

    Article  Google Scholar 

  12. Guo Q, Li VZ, Nichol JN, Huang F, Yang W, Preston SEJ, et al. MNK1/NODAL signaling promotes invasive progression of breast ductal carcinoma in situ. Cancer Res. 2019;79:1646–57.

    Article  CAS  Google Scholar 

  13. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  Google Scholar 

  14. Joshi S, Platanias LC. Mnk kinase pathway: cellular functions and biological outcomes. World J Biol Chem. 2014;5:321–33.

    Article  Google Scholar 

  15. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr., et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41:544–52.

    Article  CAS  Google Scholar 

  16. Liu L, Zhuang X, Jiang M, Guan F, Fu Q, Lin J. ANGPTL4 mediates the protective role of PPARgamma activators in the pathogenesis of preeclampsia. Cell Death Dis. 2017;8:e3054.

    Article  CAS  Google Scholar 

  17. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.

    Article  CAS  Google Scholar 

  18. Hu K, Babapoor-Farrokhran S, Rodrigues M, Deshpande M, Puchner B, Kashiwabuchi F, et al. Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget. 2016;7:7816–28.

    PubMed  PubMed Central  Google Scholar 

  19. Wang JH, Huang WS, Hu CR, Guan XX, Zhou HB, Chen LB. Relationship between RGS5 expression and differentiation and angiogenesis of gastric carcinoma. World J Gastroenterol. 2010;16:5642–6.

    Article  Google Scholar 

  20. Redondo M, Tellez T, Roldan MJ. The role of clusterin (CLU) in malignant transformation and drug resistance in breast carcinomas. Adv Cancer Res. 2009;105:21–43.

    Article  CAS  Google Scholar 

  21. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther. 2006;13:115–24.

    Article  CAS  Google Scholar 

  22. Liao YH, Chiang KH, Shieh JM, Huang CR, Shen CJ, Huang WC, et al. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene. 2017;36:2228–42.

    Article  CAS  Google Scholar 

  23. Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, Desvergne B, et al. Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress. Circ Res. 2010;106:1712–21.

    Article  CAS  Google Scholar 

  24. Fang L, Zhang M, Li Y, Liu Y, Cui Q, Wang N. PPARgene: a database of experimentally verified and computationally predicted PPAR target genes. PPAR Res. 2016;2016:6042162.

    Article  Google Scholar 

  25. Naruhn S, Toth PM, Adhikary T, Kaddatz K, Pape V, Dorr S, et al. High-affinity peroxisome proliferator-activated receptor beta/delta-specific ligands with pure antagonistic or inverse agonistic properties. Mol Pharm. 2011;80:828–38.

    Article  CAS  Google Scholar 

  26. Djeu JY, Wei S. Clusterin and chemoresistance. Adv Cancer Res. 2009;105:77–92.

    Article  CAS  Google Scholar 

  27. Kimura R, Ishikawa C, Rokkaku T, Janknecht R, Mori N. Phosphorylated c-Jun and Fra-1 induce matrix metalloproteinase-1 and thereby regulate invasion activity of 143B osteosarcoma cells. Biochim Biophys Acta. 2011;1813:1543–53.

    Article  CAS  Google Scholar 

  28. Korneeva NL, Soung YH, Kim HI, Giordano A, Rhoads RE, Gram H, et al. Mnk mediates integrin alpha6beta4-dependent eIF4E phosphorylation and translation of VEGF mRNA. Mol Cancer Res. 2010;8:1571–8.

    Article  CAS  Google Scholar 

  29. Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;10:85.

    Article  CAS  Google Scholar 

  30. O’Loghlen A, Gonzalez VM, Jurado T, Salinas M, Martin ME. Characterization of the activity of human MAP kinase-interacting kinase Mnk1b. Biochim Biophys Acta. 2007;1773:1416–27.

    Article  Google Scholar 

  31. La Paglia L, Listi A, Caruso S, Amodeo V, Passiglia F, Bazan V, et al. Potential role of ANGPTL4 in the cross talk between metabolism and cancer through PPAR signaling pathway. PPAR Res. 2017;2017:8187235.

    Article  Google Scholar 

  32. Beyaz S, Yilmaz OH. Molecular pathways: dietary regulation of stemness and tumor initiation by the PPAR-delta pathway. Clin Cancer Res. 2016;22:5636–41.

    Article  CAS  Google Scholar 

  33. Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPAR-gamma agonists as antineoplastic agents in cancers with dysregulated IGF axis. Front Endocrinol. 2017;8:31.

    Article  Google Scholar 

  34. Pettersson F, Del Rincon SV, Emond A, Huor B, Ngan E, Ng J, et al. Genetic and pharmacologic inhibition of eIF4E reduces breast cancer cell migration, invasion, and metastasis. Cancer Res. 2015;75:1102–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by the Canadian Institutes for Health Research (grants MOP-142281 PJT-156269 to WHM and SVDR, and grant PJT-162260 to SVDR) and the Canadian Cancer Society (grant 703811 WHM and SVDR). The research was further supported by the Rossy Cancer Network. Development of MNK1/2 inhibitors by Selvita S.A. has been co-financed by the National Centre for Research and Development, INNOTECH Program (INNOTECH-K1/HI1/I6/157438/NCBR/12). WY was endowed by MICRTP graduate studentships. QG was financed by a Cole Foundation Ph.D. fellowship, McGill Integrated Cancer Research Training Program (MICRTP) graduate studentship and a McGill Faculty of Medicine graduate studentship. FH was sponsored by MICRTP graduate studentships. We thank Shalom Chaim Spira for editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

WY, EK, QG, WHM, and SVDR designed the research. WY, EK, QG, SAP, FH, CG, DP, and YZ performed the experiments and analyzed the data. AE analyzed the RNA-Seq data. WY, EK, QG, FH, JNN, MSD, WHM, and SVDR wrote and edited the paper.

Corresponding authors

Correspondence to Wilson H. Miller Jr. or Sonia Victoria del Rincón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Khoury, E., Guo, Q. et al. MNK1 signaling induces an ANGPTL4-mediated gene signature to drive melanoma progression. Oncogene 39, 3650–3665 (2020). https://doi.org/10.1038/s41388-020-1240-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1240-5

This article is cited by

Search

Quick links