Skip to main content
Log in

Theoretical model for size, dimension and shape effect on electrical behavior of semiconductor nanomaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study is an effort to develop a simple analytical model without any adjustable parameter for observing the collective effect of size, dimension and shape on electrical susceptibility and dielectric constant of nanomaterials. The size dependence of electrical susceptibility and dielectric constant has been observed for some pure as well as binary semiconductor nanomaterials, in three different dimensions (i.e., nanoparticles, nanowires and nanofilms). It has been observed that the electrical susceptibility and dielectric constant both show reduction with the decrement in size, due to the increased surface-to-volume ratio and lower coordination number. The present study reveals that the difference between the values of electrical susceptibility of nanoparticles and nanowires (5–50%) is less in comparison with nanofilms (10–90%). This difference diminishes on moving toward the higher size range. The decrement in the value of dielectric constant with size is found, maximum for nanoparticles (10–80%) followed by nanowires (10–70%) and minimum in nanofilms (5–60%). The outcomes for the size-dependent dielectric constant have been compared with the available experimental and other theoretical data and found consistency in calculated results with experimental data. The model has been extended to investigate the cross-sectional shape effect along with size on the electrical susceptibility and dielectric constant of nanowires due to large applications by incorporating shape factor. Four different cross-sectional shapes: spherical, square, rectangular and hexagonal nanowires, have been taken for the present study. The calculated results of dielectric constant have been compared with the available experimental data, and close agreement was found. It has been observed that the electrical susceptibility and dielectric constant have the highest value for spherical cross-sectional-shaped nanowires and the lowest for rectangular cross-sectional-shaped nanowires. Deviation graphs show that the values of electrical susceptibility and dielectric constant for rectangular, square and hexagonal cross-sectional-shaped nanowires deviate from spherical nanowires as 2–14%, 2–4% and 1–2%, respectively. The present study confirms the importance of shape effect along with size and dimension for electrical properties of semiconductor nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Muruganandam, G. Anbalagan, G. Murugadoss, Optical, electrochemical and thermal properties of Co2+-doped CdS nanoparticles using polyvinylpyrrolidone. Appl. Nanosci. 5, 245–253 (2015)

    Article  ADS  Google Scholar 

  2. R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, Excited electronic states and optical spectra of ZnS and CdS crystallites in the 15–50 Å size range: evolution from molecular to bulk semiconducting properties. J Chem. Phys. 82, 552–559 (1985)

    Article  ADS  Google Scholar 

  3. L.E. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  Google Scholar 

  4. H. Hu, W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. J. Opt. Mater. 28, 536–550 (2006)

    Article  Google Scholar 

  5. S. Coe, W.K. Woo, M.G. Bawendi, V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002)

    Article  ADS  Google Scholar 

  6. W.V. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod–polymer solar cells. Science 295(5564), 2425–2427 (2002)

    Article  ADS  Google Scholar 

  7. X. Duan, F.Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003)

    Article  ADS  Google Scholar 

  8. H. Zhang, L.P. Wang, H.M. Xiong, L.H. Hu, B. Yang, W. Li, Hydrothermal synthesis for high quality CdTeQds. Adv. Mater. 15, 1712–1715 (2003)

    Article  Google Scholar 

  9. K. Sato, Y. Tachibana, S. Hattori, T. Chiba, S. Kuwabata, Polyacrylic acid coating of highly luminescent CdSNanocrystalsfor biological labelling applications. J. Colloid Interface Sci. 324, 257–260 (2008)

    Article  ADS  Google Scholar 

  10. L.K. Pan, C.Q. Sun, T.P. Chen, S. Li, C.M. Li, B.K. Tay, Dielectric suppression of nanosolid silicon. Nanotechnol 15(12), 1802–1806 (2004)

    Article  ADS  Google Scholar 

  11. M. Li, J.C. Li, Q. Jiang, Size-dependent band-gap and dielectric constant of Si nanocrystals. Int. J. Mod. Phys. B. 24(15–16), 2297–2301 (2010)

    Article  ADS  Google Scholar 

  12. M. Tian, M. Li, J.C. Li, Effect of size on dielectric constant for low dimension materials. Phys. B 406(3), 541–544 (2011)

    Article  ADS  Google Scholar 

  13. M. Li, H. Li, Modeling dielectric constant of semiconductor nanocrystals. IEEE Trans. Nanotech. 11(5), 1004–1008 (2012)

    Article  ADS  Google Scholar 

  14. H. Lu, X.K. Meng, Correlation between band gap, dielectric constant, Young’s modulus and melting temperature of GaN nanocrystals and their size and shape dependences. Sci. Rep. 5, 16939 (2015)

    Article  ADS  Google Scholar 

  15. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093–2097 (1962)

    Article  MATH  ADS  Google Scholar 

  16. R. Tsu, D. Babić, Doping of a quantum dot. Appl. Phys. Lett. 64(14), 1806–1808 (1994)

    Article  ADS  Google Scholar 

  17. W.H. Qi, B.Y. Huang, M.P. Wang, Z.M. Yin, J. Li, Shape factor for non-cylindrical nanowires. Phys. B Cond. Matter. 403(13–16), 2386–2389 (2008)

    Article  ADS  Google Scholar 

  18. N. Arora, U. Pachauri, D.P. Joshi, Effect of cross-sectional shape on thermal conductivity of nanowires. J. Chem. Eng. Chem. Res. 3(11), 1022–1026 (2016)

    Google Scholar 

  19. N. Arora, D.P. Joshi, A theoretical approach to study the melting temperature of metallic nanowires. AIP Conf. Proc. 1731, 050054–1–050054-3 (2016)

    Google Scholar 

  20. Sun, C. Q., Sun, X. W., Tay, B. K., Lau, S. P., Chen, T. P., Huang, H. T. and Li, S. 2001. Dielectric suppression, blue-shift in photo luminescence and absorption of nanometric semiconductors. Technical Digest. CLEO/Pacific Rim 2001. In: 4th Pacific Rim conference on lasers and electro-optics (Cat. No.01TH8557)

  21. X.Y. Lang, W.T. Zheng, Q. Jiang, Finite size effect on band structure and photoluminescence of semiconductor nanocrystals. IEEE Trans. Nanotech. 7(1), 5–9 (2008)

    Article  ADS  Google Scholar 

  22. J.H. Rose, J. Ferrante, J.R. Smith, Universal binding energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47, 675–678 (1981)

    Article  ADS  Google Scholar 

  23. K.F. Brennan, E. Bellotti, M. Farahmand, J. Haralson, P.P. Ruden, J.D. Albrecht, A. Sutandi, Materials theory based modeling of wide band gap semiconductors: from basic properties to devices. Sol.-Stat. Electron. 44(2), 195–204 (2000)

    Article  ADS  Google Scholar 

  24. Sapra, S., and Sarma, D. D. 2004. Evolution of the electronic structure with size in II–VI semiconductor nanocrystals. Phys. Rev. B. 69(12)

  25. A.L. Efros, A.L. Efros, Interband light absorption in semiconductor spheres. Sov. Phys. Semiconductor. 16(7), 772–775 (1982)

    Google Scholar 

  26. N. Arora, D.P. Joshi, Band gap dependence of semiconducting nano-wires on cross-sectional shape and size. Int. J. Phys. 91(12), 1493–1501 (2017)

    Google Scholar 

  27. Q. Jiang, H.X. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals. J. Chem. Phys. 111(5), 2176–2180 (1999)

    Article  ADS  Google Scholar 

  28. S. Suresh, Semiconductor nanomaterials, methods and applications: a review. Nanosci. Nanotech. 3(3), 62–74 (2013)

    Google Scholar 

  29. M.K. Sahu, Semiconductor nanoparticles theory and applications. Int. J. Appl. Eng. Res. 14(2), 491–494 (2019)

    Google Scholar 

  30. T.P. Chen, Y. Liu, M.S. Tse, O.K. Tan, P.F. Ho, K.Y. Liu, A.L.K. Tan, Dielectric functions of si nanocrystals embedded in a SiO2 matrix. Phys. Rev. B. 68(15), 153301 (2003)

    Article  ADS  Google Scholar 

  31. Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, Y. Zhang, Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett. 12(4), 1919–1922 (2012)

    Article  ADS  Google Scholar 

  32. S. Suresh, Studies on the dielectric properties of CdS nanoparticles. App. Nanosci. 4(3), 325–329 (2013)

    Article  ADS  Google Scholar 

  33. R. Tsu, D. Babić, L. Ioriatti, Simple model for the dielectric constant of nanoscale silicon particle. J. Appl. Phys. 82(3), 1327–1329 (1997)

    Article  ADS  Google Scholar 

  34. A.C. Sharma, Size-dependent energy band gap and dielectric constant within the generalized pennmodel applied to a semiconductor nanocrystallite. J. Appl. Phys. 100, 84301 (2006)

    Article  Google Scholar 

  35. H. Jiang, Y. Su, J. Zhu, H. Lu, X.K. Meng, Piezoelectric and pyroelectric properties of intrinsic GaN nanowires and nanotubes: size and shape effects. Nano. Energy. 45, 359–367 (2018)

    Article  Google Scholar 

  36. M. Li, J.C. Li, Size effects on the band-gap of semiconductor compounds. Mater. Lett. 60, 2526–2529 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Pachauri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachauri, U., Joshi, D.P. & Arora, N. Theoretical model for size, dimension and shape effect on electrical behavior of semiconductor nanomaterials. Appl. Phys. A 126, 253 (2020). https://doi.org/10.1007/s00339-020-3411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3411-1

Keywords

Navigation