Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for monolignol oxidation by a maize laccase

Abstract

Plant laccases catalyse the oxidation of monolignols in lignification, a process reinforcing the cell wall of many different cell types that provide mechanical support, nutrient transportation and defence against pathogens in plants1. The isozymes display a broad range of substrate preferences. Here, the substrate preference of a laccase (ZmLac3) from Zea mays (maize) was characterized. The crystal structure of ZmLac3 revealed a compact and deep substrate-binding pocket, and the binding modes of sinapyl alcohol (SinA) and coniferyl alcohol (ConA) were solved. On the basis of structural data and kinetics analysis, we propose that the regionalization of polar and hydrophobic surfaces in the binding pocket of ZmLac3 is vital for defining the orientation of SinA/ConA binding. The extra methoxyl group in SinA makes substantial contributions to interactions between SinA and ZmLac3, which are absent in the ZmLac3–ConA complex. In summary, the polar and hydrophobic interactions between SinA/ConA and ZmLac3 determine the binding positions of the monolignols in ZmLac3. These results provide valuable insight about ZmLac3 catalysis and should aid industrial processes that use plant laccases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of ZmLac3.
Fig. 2: SinA/ConA binding at the substrate pocket.

Similar content being viewed by others

Data availability

The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 6KLG (ZmLac3 native), 6KLI (ZmLac3–SinA complex) and 6KLJ(ZmLac3–ConA complex).

References

  1. Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones, S. M. & Solomon, E. I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 72, 869–883 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Caparros-Ruiz, D., Fornale, S., Civardi, L., Puigdomenech, P. & Rigau, J. Isolation and characterisation of a family of laccases in maize. Plant Sci. 171, 217–225 (2006).

    CAS  Google Scholar 

  4. McCaig, B. C., Meagher, R. B. & Dean, J. F. D. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221, 619–636 (2005).

    CAS  PubMed  Google Scholar 

  5. Berthet, S. et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23, 1124–1137 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao, Q. et al. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25, 3976–3987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, Y. et al. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Mol. Plant Pathol. 20, 309–322 (2019).

    CAS  PubMed  Google Scholar 

  8. Wildhagen, H. et al. Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigra. Tree Physiol. 38, 320–339 (2018).

    CAS  PubMed  Google Scholar 

  9. Sun, Q. et al. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Mol. Plant 11, 806–814 (2018).

    CAS  PubMed  Google Scholar 

  10. Bao, W., O’Malley, D. M., Whetten, R. & Sederoff, R. R. A laccase associated with lignification in loblolly pine xylem. Science 260, 672–674 (1993).

    CAS  PubMed  Google Scholar 

  11. Mcdougall, G. J. A comparison of proteins from the developing xylem of compression and non-compression wood of branches of Sitka spruce (Picea sitchensis) reveals a differentially expressed laccase. J. Exp. Bot. 51, 1395–1401 (2000).

    CAS  PubMed  Google Scholar 

  12. Fang, F. et al. An intracellular laccase is responsible for the epicatechin mediated anthocyanin degradation in litchi fruit pericarp. Plant Physiol. 169, 2391–2408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kallio, J. P. et al. Structure–function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. J. Mol. Biol. 392, 895–909 (2009).

    CAS  PubMed  Google Scholar 

  14. Enguita, F. J., Martins, L. O., Henriques, A. O. & Carrondo, M. A. Crystal structure of a bacterial endospore coat component a laccase with enhanced thermostability properties. J. Biol. Chem. 278, 19416–19425 (2003).

    CAS  PubMed  Google Scholar 

  15. Adzhubei, A. A., Sternberg, M. J. & Makarov, A. A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol. 425, 2100–2132 (2013).

    CAS  PubMed  Google Scholar 

  16. Chou, E. Y. et al. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J. Exp. Bot. 69, 1849–1859 (2018).

    Google Scholar 

  17. Liu, Z., Xie, T., Zhong, Q. & Wang, G. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site. Acta Crystallogr. F 72, 328–335 (2016).

    CAS  Google Scholar 

  18. Ducros, V. et al. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat. Struct. Mol. Biol. 5, 310–316 (1998).

    CAS  Google Scholar 

  19. Maestre-Reyna, M. et al. Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS ONE 10, e0120601 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Jubb, H. C. et al. Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J. Mol. Biol. 429, 365–371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Biot, C., Buisine, E., Kwasigroch, J.-M., Wintjens, R. & Rooman, M. Probing the energetic and structural role of amino acid/nucleobase cation–π interactions in protein–ligand complexes. J. Biol. Chem. 277, 40816–40822 (2002).

    CAS  PubMed  Google Scholar 

  22. Gupta, N. & Farinas, E. T. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng. Des. Sel. 23, 679–682 (2010).

    CAS  PubMed  Google Scholar 

  23. Andberg, M. et al. Essential role of the C terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. FEBS J. 276, 6285–6300 (2009).

    CAS  PubMed  Google Scholar 

  24. Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bosch, M., Mayer, C. D., Cookson, A. & Donnison, I. S. Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes. J. Exp. Bot. 62, 3545–3561 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barriere, Y., Courtial, A., Chateigner-Boutin, A. L., Denoue, D. & Grima-Pettenati, J. Breeding maize for silage and biofuel production, an illustration of a step forward with the genome sequence. Plant Sci. 242, 310–329 (2016).

    CAS  PubMed  Google Scholar 

  27. Hoopes, J. T. & Dean, J. F. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol. Biochem. 42, 27–33 (2004).

    CAS  PubMed  Google Scholar 

  28. Shen, Y. et al. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol. Plant. 147, 270–282 (2013).

    CAS  PubMed  Google Scholar 

  29. Pourcel, L. et al. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17, 2966–2980 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sterjiades, R., Dean, J. F. D., Gamble, G., Himmelsbach, D. S. & Eriksson, K. E. L. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures: reactions with monolignols and lignin model compounds. Planta 190, 75–87 (1993).

    CAS  Google Scholar 

  31. Lee, Y., Rubio, M. C., Alassimone, J. & Geldner, N. A mechanism for localized lignin deposition in the endodermis. Cell 153, 402–412 (2013).

    CAS  PubMed  Google Scholar 

  32. Munk, L., Sitarz, A. K., Kalyani, D. C., Mikkelsen, J. D. & Meyer, A. S. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 33, 13–24 (2015).

    CAS  PubMed  Google Scholar 

  33. pPIC9K a Pichia vector for multicopy integration and secreted expression (Thermo Fisher Scientific, 2010); http://tools.thermofisher.com/content/sfs/manuals/ppic9k_man.pdf

  34. Munteanu, B., Braun, M. & Boonrod, K. Improvement of PCR reaction conditions for site-directed mutagenesis of big plasmids. J. Zhejiang Univ. Sci. B 13, 244–247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pichia fermentation process guidelines (Invitrogen, 2002); http://tools.thermofisher.com/content/sfs/manuals/pichiaferm_prot.pdf

  36. O’Callaghan, J., O’Brien, M. M., McClean, K. & Dobson, A. D. W. Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J. Ind. Microbiol. Biotechnol. 29, 55–59 (2002).

    PubMed  Google Scholar 

  37. Wang, Q. S. et al. The macromolecular crystallography beamline of SSRF. Nucl. Sci. Tech. 26, 12–17 (2015).

    Google Scholar 

  38. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2010).

    Google Scholar 

  39. Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  43. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  44. Dundas, J. et al. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116–W118 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tan, K. P., Varadarajan, R. & Madhusudhan, M. S. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins. Nucleic Acids Res. 39, W242–W248 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  PubMed  Google Scholar 

  47. Bond, C. S. TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19, 311–312 (2003).

    CAS  PubMed  Google Scholar 

  48. Lafayette, P. R., Eriksson, K. E. L. & Dean, J. F. D. Nucleotide-sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acer pseudoplatanus L.). Plant Physiol. 107, 667–668 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, G. D., Li, Q. J., Luo, B. & Chen, X. Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat. Biotechnol. 22, 893–897 (2004).

    PubMed  Google Scholar 

  50. Cesarino, I. et al. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J. Exp. Bot. 64, 1769–1781 (2013).

    CAS  PubMed  Google Scholar 

  51. Sato, Y. & Whetten, R. W. Characterization of two laccases of loblolly pine (Pinus taeda) expressed in tobacco BY-2 cells. J. Plant Res. 119, 581–588 (2006).

    CAS  PubMed  Google Scholar 

  52. Ranocha, P. et al. Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. Eur. J. Biochem. 259, 485–495 (1999).

    CAS  PubMed  Google Scholar 

  53. Koutaniemi, S., Malmberg, H. A., Simola, L. K., Teeri, T. H. & Karkonen, A. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture. J. Integr. Plant Biol. 57, 341–348 (2015).

    CAS  PubMed  Google Scholar 

  54. Bond, C. S. & Schuettelkopf, A. W. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr. D 65, 510–512 (2009).

    CAS  PubMed  Google Scholar 

  55. Bertrand, T. et al. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41, 7325–7333 (2002).

    CAS  PubMed  Google Scholar 

  56. Kallio, J. P. et al. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria—common structural features of asco-laccases. FEBS J. 278, 2283–2295 (2011).

    CAS  PubMed  Google Scholar 

  57. Holm, L. & Rosenstrom, P. DAIL server: conservation mapping in 3D. Nucleic Acids Res. 38, 545–549 (2010).

    Google Scholar 

  58. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  59. Chengzhi, L. et al. Gramene: a growing plant comparative genomics resource. Nucleic Acids Res. 36, 947–953 (2008).

    Google Scholar 

  60. Hoegger, P. J., Kilaru, S., James, T. Y., Thacker, J. R. & Kues, U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J. 273, 2308–2326 (2006).

    CAS  PubMed  Google Scholar 

  61. Lawrence, C. J. et al. MaizeGDB: the maize model organism database for basic, translational, and applied research. Int. J. Plant Genomics 2008, 496957 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Innovative Academy of Seed Design (INASEED) at the Chinese Academy of Science, initial grants from the 100 Talents Program of the Chinese Academy of Sciences and the open fund from the Key Laboratory of Environmental and Applied Microbiology at the Chinese Academy of Sciences (grant nos. KLCAS-2016-09 and KLCAS-2017-05). We thank the Shanghai Synchrotron Radiation Facilities (SSRF) and the National Center for Protein Science Shanghai (NCPSS) for the provision of synchrotron radiation facilities and efficient support.

Author information

Authors and Affiliations

Authors

Contributions

T.X., Z.L. and G.W. designed the research. T.X. expressed, purified and crystallized ZmLac3 and performed the biochemical assays. T.X. and Z.L. collected and processed the diffraction data. Z.L. determined the structures. T.X., Z.L. and G.W. wrote the manuscript. G.W. directed and supervised all of the research.

Corresponding author

Correspondence to Ganggang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Jane Agger, Kurt Fagerstedt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Data collection and refinement statistics.

Extended Data Fig. 2 Topology structure of Zmlac3.

Sheets in domains I, II and III are coloured red, blue and green, respectively. Alpha-helices and 310 helices are shown as cyan and magenta cylinders, respectively. The figure was prepared by TopDraw software47.

Extended Data Fig. 3 Sequence alignment between zmlac3 and other plant laccases.

Similarities are depicted in grey-scale shading and residues that are identical indicated by a black background. Four substrate-binding loops are marked by blue boxes. Orange stars placed above the sequences indicate amino acids that may interact with substrates. 17 A. thaliana laccases (AtLacs)4, 5 Z. mays W64A laccases (ZmLacs)3, A.pseudoplatanus laccase (ApLac)48, Litchi chinensis laccase (LcLac)12, Gossypium arboretum laccase (GaLac)49, Gossypium hirsutum-15 (GhLac15)6, Saccharum officinarum laccase (SoLac)50, two P. taeda laccases (PtLacs)51, Populus euramericana laccase-90 (PeLac90)52 and Picea abies laccase-4 (PaLac4)53 were included in the alignment. The alignment was generated by ALINE54.

Extended Data Fig. 4

Statistics of three-dimensional alignment between Zmlac3 and various laccases55,56 by DALI57.

Extended Data Fig. 5

SAA, SAV and depth of substrate binding pockets in laccases.

Extended Data Fig. 6 Electron density map around SinA/ConA located in the binding pocket.

The 2Fo-Fc electron density map (1σ level, blue) and the omit Fo-Fc map (2σ level, red) around SinA (a) and ConA (b) in the binding pocket are represented in mesh.

Extended Data Fig. 7

Laccase candidates identified in maize B73. To explore the laccase candidates in Z. mays B73 genome (Refgen_V4)24, protein sequences of 17 AtLacs from A. thaliana and 5 ZmLacs from Z. mays WB64A were used as queries for BLASTP58 on Gramene59 online. The hits without three cupredoxin domains or copper binding sites were excluded. Then, the phylogenetic analysis of the candidate proteins with AtLacs, ZmLacs and plant ascorbate oxidases60 was performed in MEGA software (http://www.megasoftware.net). The hits clustered with plant ascorbate oxidases were discarded. Finally, a total of 19 laccase candidates (Gene IDs in Gramene59 and MaizeGDB61 are listed) were found in Z. mays B73 genome, which showed 36–99% sequence identity to the counterparts in Z. mays WB64A (Extended Data Fig. 9).

Extended Data Fig. 8 Neighbor-joining phylogenetic analysis of Zmlac3 with other laccases in Maize W64A and B73.

The phylogenetic tree was constructed by MEGA software (http://www.megasoftware.net/) with bootstrap tests for 1,000 replicates. 10 AtLacs4, 5 ZmLacs3 and 19 predicted ZmLacs_B73 (Extended Data Fig. 7) were clustered into five groups.

Extended Data Fig. 9

Sequence identity of laccases in maize W64A and B73.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Liu, Z. & Wang, G. Structural basis for monolignol oxidation by a maize laccase. Nat. Plants 6, 231–237 (2020). https://doi.org/10.1038/s41477-020-0595-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0595-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing