Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Quantum Josephson junction circuits and the dawn of artificial atoms

In 1985, experiments revealed the quantum behaviour of a macroscopic degree of freedom: the phase difference across a Josephson junction. The authors recount the history of this milestone for the development of superconducting quantum circuits.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Josephson junction and its measurement circuit.
Fig. 2: Cubic potential in which the macroscopic phase difference δ of the junction evolves quantum mechanically.
Fig. 3: Resonances induced by microwaves at 2.0 GHz.
Fig. 4: Resonances induced by microwaves at four different frequencies.

References

  1. Leggett, A. J. Prog. Theor. Phys. Suppl. 69, 80–100 (1980).

    ADS  Google Scholar 

  2. Martinis, J. M., Devoret, M. H. & Clarke, J. Phys. Rev. Lett. 55, 1543–1546 (1985).

    ADS  Google Scholar 

  3. Josephson, B. D. Phys. Lett. 1, 251–253 (1962).

    ADS  Google Scholar 

  4. Josephson, B. D. Adv. Phys. 14, 419–451 (1965).

    ADS  Google Scholar 

  5. Martinis, J. M., Devoret, M. H. & Clarke, J. Phys. Rev. 35, 4682–4698 (1987).

    ADS  Google Scholar 

  6. Clarke, J., Braginski, A. I. (eds) The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley, 2004).

  7. Rüfenacht, A., Flowers-Jacobs, N. E. & Benz, S. P. Metrologia 55, S152–S173 (2018).

    ADS  Google Scholar 

  8. Stewart, W. C. Appl. Phys. Lett. 12, 277–280 (1968).

    ADS  Google Scholar 

  9. McCumber, D. E. J. Appl. Phys. 39, 3113–3118 (1968).

    ADS  Google Scholar 

  10. Fulton, T. A. & Dunkelberger, L. N. Phys. Rev. B 9, 4760–4768 (1974).

    ADS  Google Scholar 

  11. Caldeira, A. O. & Leggett, A. J. Ann. Phys. 149, 374–456 (1983).

    ADS  Google Scholar 

  12. Voss, R. F. & Webb, R. A. Phys. Rev. Lett. 47, 265–268 (1981).

    ADS  Google Scholar 

  13. Jackel, L. D. et al. Phys. Rev. Lett. 47, 697–700 (1981).

    ADS  Google Scholar 

  14. Devoret, M. H., Martinis, J. M. & Clarke, J. Phys. Rev. Lett. 55, 1908–1911 (1985).

    ADS  Google Scholar 

  15. Devoret, M. H., Martinis, J. M., Esteve, D. & Clarke, J. Phys. Rev. Lett. 53, 1260–1263 (1984).

    ADS  Google Scholar 

  16. Ivlev, B. I. & Mel’nikov, V. I. Phys. Rev. Lett. 55, 1614–1617 (1985).

    ADS  Google Scholar 

  17. Larkin, A. I. & Ovchinnikov, Y. N. J. Low. Temp. Phys. 63, 317–329 (1986).

    ADS  Google Scholar 

  18. Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Phys. Scr. T76, 165–170 (1998).

    ADS  Google Scholar 

  19. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Nature 398, 786–788 (1999).

    ADS  Google Scholar 

  20. Mooij, J. E. et al. Science 285, 1036–1039 (1999).

    Google Scholar 

  21. Chiorescu, I., Nakamura, Y., Harmans, C. J. & Mooij, J. E. Science 299, 1869–1871 (2003).

    ADS  Google Scholar 

  22. Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Phys. Rev. Lett. 89, 117901 (2002).

    ADS  Google Scholar 

  23. Martinis, J. Quant. Inf. Proc. 8, 81–103 (2009).

    Google Scholar 

  24. Vion, D. et al. Science 296, 886–889 (2002).

    ADS  Google Scholar 

  25. Koch, J. et al. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  26. Houck, A. A. et al. Phys. Rev. Lett. 101, 080502 (2008).

    ADS  Google Scholar 

  27. Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Science 326, 113–116 (2009).

    ADS  Google Scholar 

  28. Devoret, M. H., Esteve, D., Martinis, J. M. & Urbina, C. Phys. Scr. T25, 118–121 (1989).

    ADS  Google Scholar 

  29. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. Science 280, 1238–1242 (1998).

    ADS  Google Scholar 

  30. Clarke, J. & Wilhelm, F. K. Nature 453, 1031–1042 (2008).

    ADS  Google Scholar 

  31. Girvin, S. M., Devoret, M. H. & Schoelkopf, R. J. Phys. Scr. T137, 014012 (2009).

    ADS  Google Scholar 

  32. Devoret, M. H. & Schoelkopf, R. J. Science 339, 1169–1174 (2013).

    ADS  Google Scholar 

  33. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T. P., Gustavsson, S. & Oliver, W. D. Appl. Phys. Rev. 6, 021318 (2019).

    ADS  Google Scholar 

  34. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006).

  35. Minev, Z. K. et al. Nature 570, 200–204 (2019).

    ADS  Google Scholar 

  36. Sayrin, C. et al. Nature 477, 73–77 (2011).

    ADS  Google Scholar 

  37. Vijay, R. et al. Nature 490, 77–80 (2012).

    ADS  Google Scholar 

  38. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information Ch. 10 (Cambridge Univ. Press, 2000).

  39. Ofek, N. et al. Nature 536, 441–445 (2016).

    ADS  Google Scholar 

  40. Arute, F. et al. Nature 574, 505–510 (2019).

    ADS  Google Scholar 

  41. Tabuchi, Y. et al. Science 349, 405–408 (2015).

    ADS  MathSciNet  Google Scholar 

  42. Ranjan, V. et al. J. Mag. Res. 310, 106662 (2020).

    Google Scholar 

  43. Gustafsson, M. V., Santos, P. V., Johansson, G. & Delsing, P. Nat. Phys. 8, 338–343 (2012).

    Google Scholar 

  44. Noguchi, A., Yamazaki, R., Tabuchi, Y. & Nakamura, Y. Phys. Rev. Lett. 119, 180505 (2017).

    ADS  Google Scholar 

  45. Malnou, M. et al. Phys. Rev. X 9, 021023 (2019).

    Google Scholar 

  46. Campagne-Ibarcq, P. et al. Phys. Rev. Lett. 120, 200501 (2018).

    ADS  Google Scholar 

  47. Axline, C. et al. Nat. Phys. 14, 705–710 (2018).

    Google Scholar 

  48. Kurpiers, P. et al. Phys. Rev. Appl. 12, 044067 (2019).

    ADS  Google Scholar 

  49. Zhong, Y. P. et al. Nat. Phys. 15, 741–744 (2019).

    Google Scholar 

  50. Higginbotham, A. P. et al. Nat. Phys. 14, 1038–1042 (2018).

    Google Scholar 

  51. Ma, R. et al. Nature 566, 51–57 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

M.H.D. acknowledges support from the Army Research Office and Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Clarke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinis, J.M., Devoret, M.H. & Clarke, J. Quantum Josephson junction circuits and the dawn of artificial atoms. Nat. Phys. 16, 234–237 (2020). https://doi.org/10.1038/s41567-020-0829-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0829-5

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics