Skip to main content
Log in

Preparation of solar/visible-light active TiO2 photocatalysts with carboxylic acids for the degradation of phenol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

TiO2 catalysts were synthesized via simple sol–gel method using different carboxylic acids. The synthesized materials were characterized by UV–Vis spectroscopy (DRS), X-ray diffraction (XRD), N2 physisorption and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the samples was evaluated in the degradation of phenol under visible and solar light. The prepared catalysts using the carboxylic acids showed an improvement in the characteristics of TiO2. Particularly, the catalyst prepared with citric acid, showed a single pure anatase phase with a small crystallite size (of around 9.4 nm), larger surface area (81 m2/g) and narrower band gap (2.94 eV) compared to the non-modified TiO2 and the reference Degussa P25. Moreover, the results showed that using citric acid, a high conversion of phenol under visible light of around 46% was achieved and a complete degradation under sunlight in a shorter time of around 90 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Desal 261:3–18

    Article  CAS  Google Scholar 

  2. Mills A, Hunte SL (1997) J Photochem Photobiol A 108:1

    Article  CAS  Google Scholar 

  3. Serpone N (2006) J Phys Chem B 110:24287–24293

    Article  CAS  Google Scholar 

  4. Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Di Li E, Haneda H, Hishita S, Ohashi N (2005) Mater Sci Eng B 117:67–75

    Article  Google Scholar 

  5. Moustakas NG, Kontos AG, Likodimos V, Katsaros F, Boukos N, Tsoutsou D, Dimoulas A, Romanos GE, Dionysiou DD, Falaras P (2013) Appl Catal B 130–131:14–24

    Article  Google Scholar 

  6. Girish Kumar S, Gomathi Devi L (2011) J Phys Chem A 115:13211–13241

    Article  Google Scholar 

  7. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catat B 125:331–349

    Article  CAS  Google Scholar 

  8. Rashad MM, Shalan AE, Mònica Lira-Cantù MSA, Abdel-Mottaleb MSA (2013) J Ind Eng Chem 19:2052–2059

    Article  CAS  Google Scholar 

  9. Nsib MF, Maayoufi A, Moussa N, Tarhouni N, Massouri A, Houas A, Chevalier Y (2013) J Photochem Photobiol A 251:10–17

    Article  CAS  Google Scholar 

  10. Sano T, Negishi N, Koike K, Takeuchi K, Matsuzawa S (2004) J Mater Chem 14:380

    Article  CAS  Google Scholar 

  11. You YF, Xu CH, Xu SS, Cao S, Wang JP, Huang YB, Shi SQ (2014) Ceram Int 40:8659–8666

    Article  CAS  Google Scholar 

  12. Song H, Jo K, Jung BY, Jung GY (2014) Nano Res 7:104–109

    Article  CAS  Google Scholar 

  13. Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Ind Eng Chem Res 46:2741–2746

    Article  CAS  Google Scholar 

  14. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) J Phys Chem B 107:13871–13879

    Article  CAS  Google Scholar 

  15. Xiao Q, Ouyang L (2009) Chem Eng J 148:248–253

    Article  CAS  Google Scholar 

  16. Ananpattarachai J, Seraphin S, Kajitvichyanukul P (2015) Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-5570-8

    Article  Google Scholar 

  17. Fu Y, Du H, Zhang S, Huang W (2005) Mater Sci Eng A 403:25–31

    Article  Google Scholar 

  18. Dozzi MV, Ohtani B, Selli E (2011) J Photochem Photobiol Phys Chem Chem Phys 13:18217–18227

    Article  CAS  Google Scholar 

  19. Tien C, Ramarao BV (2016) Sep Sci Technol 52(6):975–986. https://doi.org/10.1080/01496395.2016.1274327

    Article  CAS  Google Scholar 

  20. Ksibi M, Zemzemi A, Boukchina R (2003) J Photochem Photobiol A 159:61–70

    Article  CAS  Google Scholar 

  21. Bekkouche S, Bouhelassa M, Salah NH, Meghlaoui FZ (2004) Desal 166:355–362

    Article  CAS  Google Scholar 

  22. Liu S, Chen X (2008) J Hazard Mater 152:48–55

    Article  CAS  Google Scholar 

  23. Wang W, Serp P, Kalck P, Faria JL (2005) J Mol Catal A 235:194–199

    Article  CAS  Google Scholar 

  24. Cheng X, Yu X, Xing Z (2012) Mater Res Bull 47:3804–3809

    Article  CAS  Google Scholar 

  25. Khraisheh M, Wu L, Al-Muhtaseb AH, Albadarin AB, Walker GM (2012) Chem Eng J. https://doi.org/10.1016/j.cej.2012.09.108

    Article  Google Scholar 

  26. Bahrudin NN, Nawi MA (2018) Reac Kinet Mech Catal 124:153–169. https://doi.org/10.1007/s11144-017-1319-3

    Article  CAS  Google Scholar 

  27. Matthews RW, Mcevoy SR (1992) J Photochem Photobiol A 64:231–246

    Article  CAS  Google Scholar 

  28. Rossmanith R, Weiss C, Geserick J, Husing N, Hormann U, Kaiser U, Landfester K (2008) Chem Mater 20:5768–5780

    Article  CAS  Google Scholar 

  29. Sakatani Y, Grosso D, Cedric Boissiere LN, Sanchez C (2006) J Mater Chem 16:77–82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhia Cherni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherni, D., Ayedi, S., Jaouali, I. et al. Preparation of solar/visible-light active TiO2 photocatalysts with carboxylic acids for the degradation of phenol. Reac Kinet Mech Cat 129, 1091–1102 (2020). https://doi.org/10.1007/s11144-020-01756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01756-1

Keywords

Navigation