Skip to main content
Log in

Functionalization of partially reduced graphene oxide by metal complex as electrode material in supercapacitor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

High electrical conductivity and high surface area are two main parameters which influence supercapacitor electrode performance. Graphene has gained prominence in electrode of electrical double-layer capacitor due to its high electrical conductivity and high specific surface area. Functionalization of partially reduced graphene oxide is the state-of-the-art method in synthesis of graphene system which is used in electrode of electrical double-layer capacitors (EDLCs). In this study, graphene system was functionalized by 2,6-diaminopyridine cobalt complex with a simple method in available and engineered porous surface area to eliminate agglomeration of graphene sheets and enhance electrical conductivity of them which is suitable for EDLCs. Curved and porous structure that obtained high and available surface area for supercapacitor electrodes was approved by structural analysis such as X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Brunauer–Emmett–Teller. Furthermore, the X-ray photoelectron spectroscopy and Fourier-transform infrared were used for elemental analysis. Also, galvanostatic charge/discharge (GCD), cyclic voltammetry and electrochemical impedance spectroscopy were applied to specify electrochemical behavior of the prepared electrode. Accordingly, the electrical resistance was obtained 5.23 Ω. The specific capacitance was obtained 192 F/g by cyclic voltammetry and 107 F/g by GCD methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Kumar, E. Joanni, R. Savu, M.S. Pereira, R.K. Singh, C.J. Constantino, L.T. Kubota, A. Matsuda, S.A. Moshkalev, Energy 179, 676 (2019)

    CAS  Google Scholar 

  2. B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66, 1 (1997)

    CAS  Google Scholar 

  3. A. Hussain, A. Kumar, F. Singh, D. Avasthi, J. Phys. D: Appl. Phys. 39, 750 (2006)

    CAS  Google Scholar 

  4. G.R. Salancik, M. Conway, J. Pers. Soc. Psychol. 32, 829 (1975)

    Google Scholar 

  5. S. Trasatti, Elsevier Scientific Software (1980)

  6. D. Michell, D. Rand, R. Woods, J. Electroanal. Chem. Int. Electrochem. 89, 11 (1978)

    CAS  Google Scholar 

  7. A. Davies, Development of electro-active graphene nanoplatelets and composites for application as electrodes within supercapacitors, University of Waterloo (2012), pp. 15, 21, 32, 42

  8. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger, Appl. Phys. A 82, 599 (2006)

    CAS  Google Scholar 

  9. J. Zheng, P. Cygan, T. Jow, J. Electrochem. Soc. 142, 2699 (1995)

    CAS  Google Scholar 

  10. X. Zhou, H. Chen, D. Shu, C. He, J. Nan, J. Phys. Chem. solids 70, 495 (2009)

    CAS  Google Scholar 

  11. N.-L. Wu, Mater. Chem. Phys. 75, 6 (2002)

    CAS  Google Scholar 

  12. A. Michon, S. Vézian, A. Ouerghi, M. Zielinski, T. Chassagne, M. Portail, Appl. Phys. Lett. 97, 171909 (2010)

    Google Scholar 

  13. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130, 2730 (2008)

    CAS  PubMed  Google Scholar 

  14. A. Pandolfo, A. Hollenkamp, J. power sources 157, 11 (2006)

    CAS  Google Scholar 

  15. C.-M. Yang, Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, J. Am. Chem. Soc. 129, 20 (2007)

    CAS  PubMed  Google Scholar 

  16. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angewandte Chem. Int. Ed. 47, 373 (2008)

    CAS  Google Scholar 

  17. Y. Han, Y. Lu, Key Eng. Mater. 69, 1231 (2009)

    CAS  Google Scholar 

  18. H. Pan, J. Li, Y. Feng, Nanoscale Res. Lett. 5, 654 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, J. Electrochem. Soc. 148, A930 (2001)

    CAS  Google Scholar 

  20. K. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, J. Power Sources 195, 6250 (2010)

    CAS  Google Scholar 

  21. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10, 4863 (2010)

    CAS  PubMed  Google Scholar 

  22. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)

    CAS  PubMed  Google Scholar 

  23. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019)

    Google Scholar 

  24. Z.-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.-M. Cheng, Carbon 47, 493 (2009)

    CAS  Google Scholar 

  25. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)

    CAS  PubMed  Google Scholar 

  26. X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 323 (2008)

    CAS  PubMed  Google Scholar 

  27. Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, ACS Nano 3, 411 (2009)

    CAS  PubMed  Google Scholar 

  28. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131, 15939 (2009)

    CAS  PubMed  Google Scholar 

  29. V. López, R.S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, K. Kern, Adv. Mater. 21, 4683 (2009)

    Google Scholar 

  30. S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Nano Lett. 9, 1593 (2009)

    CAS  PubMed  Google Scholar 

  31. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)

    CAS  PubMed  Google Scholar 

  32. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    CAS  PubMed  Google Scholar 

  33. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nat. Chem. 1, 403 (2009)

    CAS  PubMed  Google Scholar 

  34. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192 (2008)

    CAS  Google Scholar 

  35. Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, Carbon 48, 1686 (2010)

    CAS  Google Scholar 

  36. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)

    CAS  PubMed  Google Scholar 

  37. R. Kumar, R.K. Singh, A.V. Alaferdov, S.A. Moshkalev, Electrochim. Acta 281, 78 (2018)

    CAS  Google Scholar 

  38. R. Kumar, A.V. Alaferdov, R.K. Singh, A.K. Singh, J. Shah, R.K. Kotnala, K. Singh, Y. Suda, S.A. Moshkalev, Compos. Part B Eng. 168, 66 (2019)

    CAS  Google Scholar 

  39. S. Bag, A. Samanta, P. Bhunia, C.R. Raj, Int. J. Hydrogen Energ. 41, 22134 (2016)

    CAS  Google Scholar 

  40. E. Kowsari, A. Ehsani, M.D. Najafi, N. Seifvand, A. Heidari, Ionics 24, 2083 (2018)

    CAS  Google Scholar 

  41. E. Kowsari, A. Ehsani, M.D. Najafi, J. Colloid Interface Sci. 504, 507 (2017)

    CAS  PubMed  Google Scholar 

  42. R. Kumar, R. Matsuo, K. Kishida, M.M. Abdel-Galeil, Y. Suda, A. Matsuda, Electrochim. Acta 303, 246 (2019)

    CAS  Google Scholar 

  43. M. Jahan, Q. Bao, J.-X. Yang, K.P. Loh, J. Am. Chem. Soc. 132, 14487 (2010)

    CAS  PubMed  Google Scholar 

  44. C. Petit, J. Burress, T.J. Bandosz, Carbon 49, 563 (2011)

    CAS  Google Scholar 

  45. E. Kowsari, M. Mohammadi, Compos. Sci. Technol. 126, 106 (2016)

    CAS  Google Scholar 

  46. Y. Deng, W. Yang, C.C. Wang, S.K. Fu, Adv. Mater. 15, 1729 (2003)

    CAS  Google Scholar 

  47. G. Titelman, V. Gelman, S. Bron, R. Khalfin, Y. Cohen, H. Bianco-Peled, Carbon 43, 641 (2005)

    CAS  Google Scholar 

  48. S. Wu, Z. Yin, Q. He, G. Lu, X. Zhou, H. Zhang, J. Mater. Chem. 21, 3467 (2011)

    CAS  Google Scholar 

  49. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    CAS  Google Scholar 

  50. K.P. Loh, Q. Bao, P.K. Ang, J. Yang, J. Mater. Chem. 20, 2277 (2010)

    CAS  Google Scholar 

  51. Y. Yang, X. Song, L. Yuan, M. Li, J. Liu, R. Ji, H. Zhao, J. Polym. Sci. Pol. Chem. 50, 329 (2012)

    CAS  Google Scholar 

  52. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon 42, 2929 (2004)

    CAS  Google Scholar 

  53. N. Seifvand, E. Kowsari, RSC Adv. 5, 93706 (2015)

    CAS  Google Scholar 

  54. S.K. Eshkalak, E. Kowsari, A. Chinnappan, S. Ramakrishna, J. Mater. Sci. Mater. Electron. 30, 11307 (2019)

    Google Scholar 

  55. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nanotechnol. 3, 538 (2008)

    CAS  PubMed  Google Scholar 

  56. H.-K. Jeong, H.-J. Noh, J.-Y. Kim, M. Jin, C. Park, Y. Lee, EPL Europhys. Lett. 82, 67004 (2008)

    Google Scholar 

  57. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    CAS  PubMed  Google Scholar 

  58. Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, ACS Nano 5, 4350 (2011)

    CAS  PubMed  Google Scholar 

  59. D. Huang, J. Lu, S. Li, Y. Luo, C. Zhao, B. Hu, M. Wang, Y. Shen, Langmuir 30, 6990 (2014)

    CAS  PubMed  Google Scholar 

  60. G. Ren, Y. Li, Z. Guo, G. Xiao, Y. Zhu, L. Dai, L. Jiang, Nano Res. 8, 3461 (2015)

    CAS  Google Scholar 

  61. Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu, Z. Wang, J.-K. Kim, Carbon 89, 102 (2015)

    CAS  Google Scholar 

  62. B. Lang, Surf. Sci. 53, 317 (1975)

    CAS  Google Scholar 

  63. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    CAS  PubMed  Google Scholar 

  64. Y.S. Yun, H. Bak, S.Y. Cho, H.-J. Jin, Curr. Appl. Phys. 11, S376 (2011)

    Google Scholar 

  65. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)

    CAS  PubMed  Google Scholar 

  66. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, Nat. Nanotechnol. 3, 210 (2008)

    CAS  PubMed  Google Scholar 

  67. A.A. Green, M.C. Hersam, Nano Lett. 9, 4031 (2009)

    CAS  PubMed  Google Scholar 

  68. J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, P.-H. Tan, Chem. Soc. Rev. 47, 1822 (2018)

    CAS  PubMed  Google Scholar 

  69. M.M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz, Chem. A Eur. J. 18, 9125 (2012)

    CAS  Google Scholar 

  70. C. Nethravathi, M. Rajamathi, Carbon 46, 1994 (2008)

    CAS  Google Scholar 

  71. J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, ACS Appl. Mater. Interfaces 8, 4724 (2016)

    CAS  PubMed  Google Scholar 

  72. K.-S. Kim, S.-J. Park, Electrochim. Acta 56, 6547 (2011)

    CAS  Google Scholar 

  73. A. Ehsani, E. Kowsari, F.B. Ajdari, R. Safari, H.M. Shiri, J. Colloid Interface Sci. 497, 258 (2017)

    CAS  PubMed  Google Scholar 

  74. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326 (2012)

    CAS  PubMed  Google Scholar 

  75. X.-Y. Peng, X.-X. Liu, D. Diamond, K.T. Lau, Carbon 49, 3488 (2011)

    CAS  Google Scholar 

  76. W. Liu, X. Yan, J. Lang, J. Chen, Q. Xue, Electrochim. Acta 60, 41 (2012)

    CAS  Google Scholar 

  77. N. Basri, B. Dolah, Int. J. Electrochem. Sci. 8, 257 (2013)

    Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to Research Affairs Division at the Amirkabir University of Technology of Tehran (AUT) (Grant No. 1235/40) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh Kowsari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshandeh, M.B., Kowsari, E. Functionalization of partially reduced graphene oxide by metal complex as electrode material in supercapacitor. Res Chem Intermed 46, 2595–2612 (2020). https://doi.org/10.1007/s11164-020-04109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04109-8

Keywords

Navigation