Skip to main content
Log in

Allantoin, a Potential Metabolite That Promotes AMPK Phosphorylation and Suppresses Cholesterol Biosynthesis Via the Mevalonate Pathway and Bloch Pathway

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effect of probiotic administration on obese and ageing models. Sprague Dawley rats were subjected to high-fat diet (HFD) and injected with D-galactose to induce premature ageing. Upon 12 weeks of treatment, the faecal samples were collected and subjected to gas chromatography–mass spectrophotometry (GC-MS) analysis for metabolite detection. The sparse partial least squares discriminant analysis (sPLS-DA) showed a distinct clustering pattern of metabolite profile in the aged and obese rats administered with probiotics Lactobacillus plantarum DR7 and L. reuteri 8513d, particularly with a significantly higher concentration of allantoin. Molecular docking simulation showed that allantoin promoted the phosphorylation (activation) of adenosine monophosphate-activated kinase (AMPK) by lowering the substrate free energy of binding (FEB) and induced the formation of an additional hydrogen bond between Val184 and the substrate AMP. Allantoin also suppressed cholesterol biosynthesis by either inducing enzyme inhibition, occupying or blocking the putative binding site to result in non-spontaneous substrate binding, as in the cases of 3-hydroxy-methylglutaryl-coA reductase (HMGCR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) where positive FEBs were reported. These results demonstrated the potential of allantoin to alleviate age-related hypercholesterolaemia by upregulating AMPK and downregulating cholesterol biosynthesis via the mevalonate pathway and Bloch pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Houston, D. K., Nicklas, B. J., & Zizza, C. A. (1886-1895). Weighty concerns: the growing prevalence of obesity among older adults. Journal of the American Dietetic Association, 2009, 109.

    Google Scholar 

  2. Feingold, K.R.; Grunfeld, C. (2018). Obesity and dyslipidemia. In Endotext [Internet], MDText. com, Inc.

  3. Nelson, R. H. (2013). Hyperlipidemia as a risk factor for cardiovascular disease. Primary Care; Clinics in Office Practice, 40(1), 195–211.

    Article  Google Scholar 

  4. Mazein, A., Watterson, S., Hsieh, W.-Y., Griffiths, W. J., & Ghazal, P. (2013). A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochemical Pharmacology, 86(1), 56–66.

    Article  CAS  Google Scholar 

  5. Mitsche, M. A., McDonald, J. G., Hobbs, H. H., & Cohen, J. C. (2015). Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. Elife, 4, 56–66.

    Article  Google Scholar 

  6. Hardie, D. G. (2011). AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 25, 1895–1908.

  7. Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13, 1016.

    Article  CAS  Google Scholar 

  8. Salminen, A., & Kaarniranta, K. (2012). AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Research Reviews, 11(2), 230–241.

    Article  CAS  Google Scholar 

  9. Steinberg, G. R., & Kemp, B. E. (2009). AMPK in health and disease. Physiological Reviews, 89(3), 1025–1078.

    Article  CAS  Google Scholar 

  10. Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018). Benefaction of probiotics for human health: a review. Journal of Food and Drug Analysis, 26, 927–939.

    Article  Google Scholar 

  11. Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, 61, 1600240.

    Article  Google Scholar 

  12. Vaiserman, A. M., Koliada, A. K., & Marotta, F. (2017). Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Research Reviews, 35, 36–45.

    Article  CAS  Google Scholar 

  13. Lew, L. C., Hor, Y. Y., Jaafar, M. H., Khoo, B. Y., Sasidharan, S., Choi, S. B., Ong, K. L., Kato, T., Nakanishi, Y., Ohno, H., & Liong, M. T. (2019). Effects of potential probiotic strains on the fecal microbiota and metabolites of d-galactose-induced aging rats fed with high-fat diet. Probiotics and antimicrobial proteins, 1–18.

  14. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.

    Article  CAS  Google Scholar 

  15. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30.

    Article  CAS  Google Scholar 

  16. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer Jr., E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. Journal of Molecular Biology, 112(3), 535–542.

    Article  CAS  Google Scholar 

  17. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.

    Article  CAS  Google Scholar 

  18. Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447.

    Article  CAS  Google Scholar 

  19. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  CAS  Google Scholar 

  20. Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786.

    Article  CAS  Google Scholar 

  21. De Preter, V., Ghebretinsae, A. H., Abrahantes, J. C., Windey, K., Rutgeerts, P., & Verbeke, K. (2011). Impact of the synbiotic combination of Lactobacillus casei Shirota and oligofructose-enriched inulin on the fecal volatile metabolite profile in healthy subjects. Molecular Nutrition & Food Research, 55, 714–722.

    Article  Google Scholar 

  22. Nealon, N. J., Yuan, L., Yang, X., & Ryan, E. P. (2017). Rice bran and probiotics alter the porcine large intestine and serum metabolomes for protection against human rotavirus diarrhea. Frontiers in Microbiology, 8, 653.

    Article  Google Scholar 

  23. Grandiosa, R., Mérien, F., Young, T., Van Nguyen, T., Gutierrez, N., Kitundu, E., & Alfaro, A. C. (2018). Multi-strain probiotics enhance immune responsiveness and alters metabolic profiles in the New Zealand black-footed abalone (Haliotis iris). Fish & Shellfish Immunology, 82, 330–338.

    Article  CAS  Google Scholar 

  24. Nguyen, T. L., Chun, W.-K., Kim, A., Kim, N., Roh, H. J., Lee, Y., Yi, M., Park, C.-I., & Kim, D.-H. (2018). Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichythys olivaceus). Frontiers in Microbiology, 2059, 9.

    Google Scholar 

  25. Wang, W., Li, Z., Gan, L., Fan, H., & Guo, Y. (2018). Dietary supplemental Kluyveromyces marxianus alters the serum metabolite profile in broiler chickens. Food & Function, 9, 3776–3787.

    Article  Google Scholar 

  26. Hor, Y.-Y., Lew, L.-C., Jaafar, M. H., Lau, A. S.-Y., Ong, J.-S., Kato, T., Nakanishi, Y., Azzam, G., Azlan, A., & Ohno, H. (2019). Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacological Research, 104312.

  27. Vernocchi, P., Del Chierico, F., & Putignani, L. (2016). Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Frontiers in Microbiology, 7, 1144.

    Article  Google Scholar 

  28. Thornfeldt, C. (2005). Cosmeceuticals containing herbs: fact, fiction, and future. Dermatologic Surgery, 31, 873–881.

    Article  CAS  Google Scholar 

  29. Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., & Mollace, V. (2016). Regulation of uric acid metabolism and excretion. International Journal of Cardiology, 213, 8–14.

    Article  Google Scholar 

  30. El Mubarak, M. A. S., Lamari, F. N., & Kontoyannis, C. (2013). Simultaneous determination of allantoin and glycolic acid in snail mucus and cosmetic creams with high performance liquid chromatography and ultraviolet detection. Journal of Chromatography A, 1322, 49–53.

    Article  Google Scholar 

  31. Araújo, L. U., Grabe-Guimarães, A., Mosqueira, V. C. F., Carneiro, C. M., & Silva-Barcellos, N. M. (2010). Profile of wound healing process induced by allantoin. Acta Cirúrgica Brasileira, 25, 460–461.

    Article  Google Scholar 

  32. Go, H.-K., Rahman, M., Kim, G.-B., Na, C.-S., Song, C.-H., Kim, J.-S., Kim, S.-J., & Kang, H.-S. (2015). Antidiabetic effects of yam (Dioscorea batatas) and its active constituent, allantoin, in a rat model of streptozotocin-induced diabetes. Nutrients, 7, 8532–8544.

    Article  CAS  Google Scholar 

  33. Lin, K.-C., Yeh, L.-R., Chen, L.-J., Wen, Y.-J., Cheng, K.-C., & Cheng, J.-T. (2012). Plasma glucose-lowering action of allantoin is induced by activation of imidazoline I-2 receptors in streptozotocin-induced diabetic rats. Hormone and Metabolic Research, 44(1), 41–46.

    Article  CAS  Google Scholar 

  34. Niu, C.-S., Chen, W., Wu, H.-T., Cheng, K.-C., Wen, Y.-J., Lin, K.-C., & Cheng, J.-T. (2010). Decrease of plasma glucose by allantoin, an active principle of yam (Dioscorea spp.), in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry, 58(22), 12031–12035.

    Article  CAS  Google Scholar 

  35. Kim, H.-L., Jeon, Y.-D., Park, J., Rim, H.-K., Jeong, M.-Y., Lim, H., Ko, S.-G., Jang, H.-J., Lee, B.-C., & Lee, K.-T. (2013). Corni fructus containing formulation attenuates weight gain in mice with diet-induced obesity and regulates adipogenesis through AMPK. Evidence-based Complementary and Alternative Medicine, 2013.

  36. Ma, J., Kang, S., Meng, X., Kang, A., Park, J., Park, Y.-K., & Jung, H. (2018). Effects of rhizome extract of Dioscorea batatas and its active compound, allantoin, on the regulation of myoblast differentiation and mitochondrial biogenesis in C2C12 myotubes. Molecules, 2023, 23.

    Google Scholar 

  37. Kahraman, A., Morris, R. J., Laskowski, R. A., Favia, A. D., & Thornton, J. M. (2010). On the diversity of physicochemical environments experienced by identical ligands in binding pockets of unrelated proteins. Proteins: Structure, Function, and Bioinformatics, 78, 1120–1136.

    Article  CAS  Google Scholar 

  38. Istvan, E. S., Palnitkar, M., Buchanan, S. K., & Deisenhofer, J. (2000). Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. The EMBO Journal, 19, 819–830.

    Article  CAS  Google Scholar 

  39. Liong, M.-T., Lee, B.-H., Choi, S.-B., Lew, L.-C., Lau, A.-S.-Y., & Daliri, B. (2015). Cholesterol-lowering effects of probiotics and prebiotics. Probiotics and Prebiotics, 429–446.

  40. Friesen, J. A., & Rodwell, V. W. (2004). The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biology, 5, 248.

    Article  Google Scholar 

  41. Thompson, P. D., Panza, G., Zaleski, A., & Taylor, B. (2016). Statin-associated side effects. Journal of the American College of Cardiology, 67, 2395–2410.

    Article  CAS  Google Scholar 

  42. Fu, Z., Wang, M., Potter, D., Miziorko, H. M., & Kim, J.-J. P. (2002). The structure of a binary complex between a mammalian mevalonate kinase and ATP: insights into the reaction mechanism and human inherited disease. Journal of Biological Chemistry, 277(20), 18134–18142.

    Article  CAS  Google Scholar 

  43. Dougherty, D. A. (2007). Cation-π interactions involving aromatic amino acids. The Journal of Nutrition, 137, 1504S–1508S.

    Article  CAS  Google Scholar 

  44. Tu, T., Li, Y., Su, X., Meng, K., Ma, R., Wang, Y., Yao, B., Lin, Z., & Luo, H. (2016). Probing the role of cation-π interaction in the thermotolerance and catalytic performance of endo-polygalacturonases. Scientific Reports, 6, 38413.

    Article  CAS  Google Scholar 

  45. Strushkevich, N., Usanov, S. A., & Park, H.-W. (2010). Structural basis of human CYP51 inhibition by antifungal azoles. Journal of Molecular Biology, 397(4), 1067–1078.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.-G.Y. would like to thank M.-T.L. and S.-B.C. for providing guidance and support throughout the project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sy-Bing Choi or Min-Tze Liong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, PG., Choi, SB. & Liong, MT. Allantoin, a Potential Metabolite That Promotes AMPK Phosphorylation and Suppresses Cholesterol Biosynthesis Via the Mevalonate Pathway and Bloch Pathway. Appl Biochem Biotechnol 191, 226–244 (2020). https://doi.org/10.1007/s12010-020-03265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03265-2

Keywords

Navigation