Skip to main content
Log in

Free-volume theory coupled with modified group-contribution PC-SAFT for predicting viscosities of 1-alkenes

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A modified group-contribution PC-SAFT EoS combined with the Free-volume theory (FVT), recently proposed (DOI:https://doi.org/10.1016/j.fluid.2019.112280) to simultaneously model the fluid phase equilibria and viscosity of fluids, is extended in this work to estimate the viscosity of 1-alkenes. Generalized correlation coefficients are proposed for the FVT triplet parameter set, which makes it possible to extrapolate the viscosity prediction of similar compounds that are not included in the fitting pool. The model is validated using a large experimental data of 1-alkenes over wide range of temperature and pressure (up to 2,500 bars). For 1-pentene to 1-triacontene, the overall average absolute deviation of the experimental liquid and vapor viscosity from those calculated by the model is of 5.37% and 1.41%, respectively, which are appropriate for most industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAD:

average absolute deviation

CP-PC-SAFT:

critical point-based modified PC-SAFT

DIPPR:

design institute for physical property data

EoS:

equation of state

mg-SAFT:

modified group-contribution PC-SAFT

FVT:

free-volume theory

FT:

friction theory

EFT-YS:

expanded fluid theory-Yarranton and Satyro

Npt:

number of data points

P:

pressure [bar]

PC-SAFT:

perturbed-chain statistical associating fluid theory

PR:

peng-robinson

SAFT:

statistical associating fluid theory

SRK:

Soave-Redlich-Kwong

T:

temperature [K]

exp:

experimental

calc:

calculated

References

  1. E. Hendriks, G. M. Kontogeorgis, R. Dohrn, J.-C. de Hemptinne, I. G. Economou, L. F. Zilnik and V. Vesovic, Ind. Eng. Chem. Res., 49, 11131 (2010).

    Article  CAS  Google Scholar 

  2. C. Nieto-Draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau, J.-C. de Hemptinne, P. Ungerer, B. Rousseau and C. Adamo, Chem. Rev., 115, 13093 (2015).

    Article  CAS  Google Scholar 

  3. A. K. Mehrotra, W. D. Monnery and W. Y. Svrcek, Fluid Phase Equilib., 117, 344 (1996).

    Article  CAS  Google Scholar 

  4. H. O. Baled, I. K. Gamwo, R. M. Enick and M. A. McHugh, Fuel, 218, 89 (2018).

    Article  CAS  Google Scholar 

  5. I. Polishuk, Ind. Eng. Chem. Res., 54, 6999 (2015).

    Article  CAS  Google Scholar 

  6. R. J. Martins, M. J. E. d. M. Cardoso and O. E. Barcia, Ind. Eng. Chem. Res., 42, 3824 (2003).

    Article  CAS  Google Scholar 

  7. A. Allal, C. Boned and A. Baylaucq, Phys. Rev. E, 64, 011203 (2001).

    Article  CAS  Google Scholar 

  8. S. E. Quiñones-Cisneros, C. K. Zéberg-Mikkelsen, J. Fernández and J. García, AIChE J., 52, 1600 (2006).

    Article  CAS  Google Scholar 

  9. M. A. Satyro and H. W. Yarranton, Fluid Phase Equilib., 298, 1 (2010).

    Article  CAS  Google Scholar 

  10. I. Polishuk and A. Yitzhak, Ind. Eng. Chem. Res., 53, 959 (2014).

    Article  CAS  Google Scholar 

  11. M. He, X. Qi, X. Liu, C. Su and N. Lv, Int. J. Refrigeration, 54, 55 (2015).

    Article  CAS  Google Scholar 

  12. S. P. Tan, H. Adidharma, B. F. Towler and M. Radosz, Ind. Eng. Chem. Res., 44, 8409 (2005).

    Article  CAS  Google Scholar 

  13. F. Llovell, R. Marcos and L. Vega, J. Phys. Chem. B, 117, 8159 (2013).

    Article  CAS  Google Scholar 

  14. J. Gross and G. Sadowski, Ind. Eng. Chem. Res., 40, 1244 (2001).

    Article  CAS  Google Scholar 

  15. D. NguyenHuynh, Fluid Phase Equilib., 430, 33 (2016).

    Article  CAS  Google Scholar 

  16. D. NguyenHuynh, T. Q. C. Mai and T. K. S. Tran, Fluid Phase Equilib., 501, 112280 (2019).

    Article  CAS  Google Scholar 

  17. D. NguyenHuynh, M. T. Luu, X. T. T. Nguyen, C. T. Q. Mai and S. T. K. Tran, Fluid Phase Equilib., 502, 112298 (2019).

    Article  CAS  Google Scholar 

  18. T. T. X. Nguyen and D. NguyenHuynh, Fluid Phase Equilib., 472, 128 (2018).

    Article  CAS  Google Scholar 

  19. P. D. Neufeld, A. Janzen and R. Aziz, J. Chem. Phys., 57, 1100 (1972).

    Article  CAS  Google Scholar 

  20. D. NguyenHuynh and D. NguyenHuynh, Fluid Phase Equilib., 434, 176 (2017).

    Article  CAS  Google Scholar 

  21. D. Nguyenhuynh, Modélisation thermodynamique de mélanges symétriques et asymétriques de composés polaires oxygénés et/ou aromatiques par gc-saft, phd thesis, Institut Galileé, Universite Paris Nord, Villetaneuse, France (2008, pp. 59–105).

    Google Scholar 

  22. D. NguyenHuynh, Fluid Phase Equilib., 473, 201 (2018).

    Article  CAS  Google Scholar 

  23. R. Rowley, Dippr data compilation of pure chemical properties, Design Institute for Physical Properties, Ref Type: Electronic Citation (2010).

    Google Scholar 

  24. D. I. Sagdeev, M. G. Fomina, G. K. Mukhamedzyanov and I. M. Abdulagatov, J. Mol. Liq., 197, 160 (2014).

    Article  CAS  Google Scholar 

  25. D. I. Sagdeev, M. G. Fomina, G. K. Mukhamedzyanov and I. M. Abdulagatov, Thermochim. Acta, 592, 73 (2014).

    Article  CAS  Google Scholar 

  26. D. I. Sagdeev, M. G. Fomina and I. M. Abdulagatov, J. Solution Chem., 46, 966 (2017).

    Article  CAS  Google Scholar 

  27. H. Lubarsky, I. Polishuk and D. NguyenHuynh, J. Supercrit. Fluids, 110, 11 (2016).

    Article  CAS  Google Scholar 

  28. H. Lubarsky, I. Polishuk and D. NguyenHuynh, J. Supercrit. Fluids, 115, 65 (2016).

    Article  CAS  Google Scholar 

  29. D. NguyenHuynh, S. T. K. Tran and C. Mai, Ind. Eng. Chem. Res., 58(36), 16963 (2019).

    Article  CAS  Google Scholar 

  30. D. NguyenHuynh and C. T. Q. Mai, Ind. Eng. Chem. Res., 58, 8923 (2019).

    Article  CAS  Google Scholar 

  31. E. T. Hashim, L. Ghalib and H. Adell, Pet. Sci. Technol., 30, 2341 (2012).

    Article  CAS  Google Scholar 

  32. H. Gürbüz Yücel and S. Özdo an, Can. J. Chem. Eng., 76, 148 (1998).

    Article  Google Scholar 

  33. D. I. Sagdeev, M. G. Fomina, G. K. Mukhamedzyanov and I. M. Abdulagatov, J. Chem. Eng. Data, 59, 1105 (2014).

    Article  CAS  Google Scholar 

  34. D. I. Sagdeev, M. G. Fomina, G. K. Mukhamedzyanov and I. M. Abdulagatov, High Temp.-High Pressures, 42, 509 (2013).

    CAS  Google Scholar 

  35. K. Lucas and K. Stephan, Viscosity of dense fluids, Plenum Press: New York (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong NguyenHuynh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NguyenHuynh, D., Luu, M.T., Mai, C.T.Q. et al. Free-volume theory coupled with modified group-contribution PC-SAFT for predicting viscosities of 1-alkenes. Korean J. Chem. Eng. 37, 402–410 (2020). https://doi.org/10.1007/s11814-019-0473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0473-x

Keywords

Navigation