Skip to main content
Log in

Fabrication methods of dry adhesive with various shaped microsuction cups

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Bio-inspired micro- and nanostructures are emerging as novel dry adhesives owing to their high aspect ratio micropillar structure, resulting in collective van der Waals attraction between the adhesive and the substrate. Specifically, gecko-inspired structures exhibit great adhesive properties on smooth surfaces; however, the pull-off strength of micropillars in gecko-inspired surfaces can be decreased by applying a preloading force. Therefore, octopus suckers or suction cup-like structures have been considered as alternative microstructures providing high adhesion force. The fabrication of both microsuckers and micropillar structures is complicated and requires sophisticated control of the microstructure using photolithography and sequential polymer-based replica molding. Therefore, in this study, a fabrication method for octopus-like and suction cup-like micropatterns on polymer matrix is suggested by simple replica molding using a single master wafer. The relationship between the total adhesion force and the effective surface area of micropatterns was established and calculated by summing the preloading force, the suction force in the normal direction, and the shear force induced by van der Waals attraction. The results of adhesion force measurement and the repeatability test show that the micropatches with square microholes have high adhesion force (16 N/cm2) and good repeatability of attachments/detachments over 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Creton, MRS Bull., 28, 434 (2003).

    Article  CAS  Google Scholar 

  2. L. Qie and M. A. Dubé, Inter. J. Adhes. Adhes., 30, 654 (2010).

    Article  CAS  Google Scholar 

  3. A. K. Singh, B. P. Panda, S. Mohanty, S. K. Nayak and M. K. Gupta, Korean J. Chem. Eng., 34, 3028 (2017).

    Article  CAS  Google Scholar 

  4. H. E. Jeong and K. Y. Suh, Nano Today, 4, 335 (2009).

    Article  CAS  Google Scholar 

  5. W. G. Bae, D. Kim, M. K. Kwak, L. Ha, S. M. Kang and K. Y. Suh, Adv. Healthcare Mater., 2, 109 (2013).

    Article  CAS  Google Scholar 

  6. K. Jin, Y. Tian, J. S. Erickson, J. Puthoff, K. Autumn and N. S. Pesika, Langmuir, 28, 5737 (2012).

    Article  CAS  Google Scholar 

  7. H. E. Jeong, M. K. Kwak and K. Y. Suh, Langmuir, 26, 2223 (2010).

    Article  CAS  Google Scholar 

  8. Y. Wang, H. Hu, J. Shao and Y. Ding, ACS Appl. Mater. Interfaces, 6, 2213 (2014).

    Article  CAS  Google Scholar 

  9. D. Brodoceanu, C. T. Nauer, E. Kroner, E. Arzt and T. Kraus, Bioinspir. Biomim., 11, 051001 (2016).

    Article  CAS  Google Scholar 

  10. M. Follador, F. Tramacere and B. Mazzolai, Bioinspir. Biomim., 9, 046002 (2014).

    Article  CAS  Google Scholar 

  11. H. Yi, I. Hwang, M. Sung, D. Lee, J.-H. Kim, S. M. Kang, W.-G. Bae and H. E. Jeong, Int. J. Precis. Eng. Manuf., 1, 347 (2014).

    Article  Google Scholar 

  12. S. Baik, D. W. Kim, Y. Park, T.-J. Lee, S. H. Bhang and C. Pang, Nature, 546, 396 (2017).

    Article  CAS  Google Scholar 

  13. S. Baik, J. Kim, H. J. Lee, T. H. Lee and C. Pang, Adv. Sci., 5, 1800100 (2018).

    Article  CAS  Google Scholar 

  14. S. Qiao, L. Wang, K.-H. Ha and N. Lu, Soft Matter, 14, 8509 (2018).

    Article  CAS  Google Scholar 

  15. A. del Campo and E. Arzt, Macromol. Biosci., 7, 118 (2007).

    Article  CAS  Google Scholar 

  16. M. K. Kwak, H.-E. Jeong and K. Y. Suh, Adv. Mater., 23, 3949 (2011).

    Article  CAS  Google Scholar 

  17. R. Spolenak, S. Gorb and E. Arzt, Acta Biomater., 1, 5 (2005).

    Article  Google Scholar 

  18. M. T. Ghoneim and M. M. Husain, Small, 13(16), 1601801 (2017).

    Article  CAS  Google Scholar 

  19. Y.-C. Chen and H. Yang, ACS Nano, 11, 5332 (2017).

    Article  CAS  Google Scholar 

  20. M. K. Kwak, H. E. Jeong, W. G. Bae, H.-S. Jung and K. Y. Suh, Small, 7, 2296 (2011).

    Article  CAS  Google Scholar 

  21. F. Tramacere, N. M. Pugno, M. J. Kuba and B. Mazzolai, Interface Focus, 5, 20140050 (2014).

    Article  Google Scholar 

  22. J. Zou, J. Wang and C. Ji, Sci. Rep., 6, 37221 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2017R1A2B4001829).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Kim, Y. Fabrication methods of dry adhesive with various shaped microsuction cups. Korean J. Chem. Eng. 37, 563–570 (2020). https://doi.org/10.1007/s11814-019-0452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0452-2

Keywords

Navigation