Skip to main content
Log in

Efficient photocatalytic degradation of 2-chloro-4,6-dinitroresorcinol in salty industrial wastewater using glass-supported TiO2

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

2-chloro-4,6-dinitroresorcinol (CDNR) is detrimental to the environment and human health owing to its high toxicity and poor biodegradability. To demonstrate the feasibility of photocatalytic degradation of CDNR from industrial salty wastewater by borosilicate glass supported TiO2 under UV light irradiation, borosilicate glass supported TiO2 was prepared successfully by a novel sol-gel route via dip-coating method and characterized by XRD, SEM, FTIR and XPS analysis. The results showed that TiO2 catalyst has the anatase phase structure with crystallite size of 11.5 nm and coats uniformly on the borosilicate glass. Also, the effects of reaction time, pH value, TiO2 dosage, CDNR concentration, and Cl on the degradation efficiency of CDNR were investigated. The results indicated that at pH 2, reaction time 3.5h, CDNR concentration 10mg/L, NaCl concentration 5.85% (w/w) and TiO2 dosage 1.0g/L, 97.7% of CDNR was degraded in the presence of Cl, this corresponded to a rate constant of 1.05 h−1, illustrating the feasibility of photocatalytic degradation process. This contribution provides a basic investigation regarding the potential application of borosilicate glass supported TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Shi and Y. Huang, J. Harbin Inst. Technol. New Ser., 15, 518 (2008).

    CAS  Google Scholar 

  2. B. Wang, Y. Zhang, W. Jiang, J. Li and Q. Luo, New Chem. Mat., 41, 117 (2013).

    Google Scholar 

  3. X. Li, F. Qin, Q. Dai, S. Shao and X. Wang, Res. Chem. Intermed., 44, 6087 (2018).

    CAS  Google Scholar 

  4. J. Hu, Y. Huang and N. Jin, Synth. Technol. Appl., 18, 18 (2003).

    Google Scholar 

  5. G. Cai, D. Li, D. Fang and W. Yu, Polym. Test., 40, 143 (2014).

    CAS  Google Scholar 

  6. X. Wei, H. Wang, Z. Li, Z. Huang, H. Qi and W. Jiang, Appl. Surf. Sci., 372, 108 (2016).

    CAS  Google Scholar 

  7. M. Mich, US Patent, 5,001, 279 (1991).

  8. Y. Zhang, W. Jiang and Q. Yang, China Ceram., 50, 34 (2014).

    CAS  Google Scholar 

  9. H. Chaker, L. Cherif-Aouali, S. Khaoulani, A. Bengueddach and S. Fourmentin, J. Photochem. Photobiol. A., 318, 142 (2016).

    CAS  Google Scholar 

  10. K. Nakata and A. Fujishima, J. Photochem. Photobiol. C., 13, 169 (2012).

    CAS  Google Scholar 

  11. Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang and L. Chen, J. Hazard. Mater., 241-242, 323 (2012).

    PubMed  CAS  Google Scholar 

  12. X. Wang, Z. Wu, Y. Wang, W. Wang, X. Wang, Y. Bu and J. Zhao, J. Hazard. Mater., 262, 16 (2013).

    PubMed  CAS  Google Scholar 

  13. S. I. Patsios, V. C. Sarasidis and A. J. Karabelas, Sep. Purif. Technol., 104, 333 (2013).

    CAS  Google Scholar 

  14. J. Sun, X. Yan, K. Lv, S. Sun, K. Deng and D. Du, J. Mol. Catal. A-Chem., 367, 31 (2013).

    CAS  Google Scholar 

  15. Z. Lu, F. Chen, M. He, M. Song, Z. Ma, W. Shi, Y. Yan, J. Lan, F. Li and P. Xiao, Chem. Eng. J., 249, 15 (2014).

    CAS  Google Scholar 

  16. Z. Lu, P. Huo, Y. Luo, X. Liu, D. Wu, X. Gao, C. Li and Y. Yan, J. Mol. Catal. A-Chem., 378, 91 (2013).

    CAS  Google Scholar 

  17. Z. Mohammadi, S. Sharifnia and Y. Shavisi, Mater. Chem. Phys., 184, 110 (2016).

    CAS  Google Scholar 

  18. A. Fernández, G. Lassaletta, V. M. Jiménez, A. Justo, A. R. González-Elipe, J.-M. Herrmann, H. Tahiri and Y. Ait-Ichou, Appl. Catal. B-Environ., 7, 49 (1995).

    Google Scholar 

  19. M. R. Espino-Estévez, C. Fernández-Podríguez, O. M. González-Díaz, J. A. Navío, D. Fernández-Hevia and J. M. Doña-Rodríguez, Chem. Eng. J., 279, 488 (2015).

    Google Scholar 

  20. B. Tryba, J. Hazard. Mater., 151, 62 (2008).

    Google Scholar 

  21. A. Shet and K. V. Shetty, Environ. Sci. Pollut. Res., 23, 20055 (2016).

    CAS  Google Scholar 

  22. J. Thomasa, S. Radhikaa and M. Yoonb, J. Mol. Catal. A-Chem., 411, 146 (2016).

    Google Scholar 

  23. A. Tolosana-Moranchel, D. Ovejero, B. Barco, A. Bahamonde, E. Díaz and M. Faraldos, J. Environ. Chem. Eng., 7, 103051 (2019).

    CAS  Google Scholar 

  24. H. Wang, W. Liang, W. Jiang, Mater. Chem. Phys., 130, 1372 (2011).

    CAS  Google Scholar 

  25. X. Wei, H. Wang, X. Wang and W. Jiang, Appl. Surf. Sci., 426, 1271 (2017).

    CAS  Google Scholar 

  26. H. Ichinose, M. Terasaki and H. Katsuki, J. Sol-Gel Sci. Technol., 22, 33 (2001).

    CAS  Google Scholar 

  27. R. Ludwichk, O. K. Helferich, C. P. Kist, A. C. Lopes, T. Cavasotto, D. C. Silva and M. Barreto-Rodrigues, J. Hazard. Mater., 293, 81 (2015).

    PubMed  CAS  Google Scholar 

  28. L. Ge, M. Xu and H. Fang, J. Sol-Gel Sci. Technol., 38, 47 (2006).

    CAS  Google Scholar 

  29. J. Wu and C. Chen, J. Photochem. Photobiol. A: Chem., 163, 509 (2004).

    CAS  Google Scholar 

  30. H. Khan, A. K. Khalil, A. Khan, K. Saeed and N. Ali, Korean J. Chem. Eng., 33, 2802 (2016).

    CAS  Google Scholar 

  31. M. Tasbihi, I. Călin, A. Šuligoj, M. Fanetti and U. L. Štangar, J. Photochem. Photobiol. A: Chem., 336, 89 (2017).

    CAS  Google Scholar 

  32. S. Sun, R. Zhao, Y. Xie and Y. Liu, Food Control, 100, 183 (2019).

    CAS  Google Scholar 

  33. J. R. Kim and E. Kan, J. Eviron. Manage., 180, 94 (2016).

    CAS  Google Scholar 

  34. S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu and Y. Wei, Appl. Catal. B-Environ., 158-159, 20 (2014).

    CAS  Google Scholar 

  35. G. An, W. Ma, Z. Sun, Z. Liu, B. Han, S. Miao, Z. Miao and K. Ding, Carbon, 45, 1795 (2007).

    CAS  Google Scholar 

  36. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu and D. Han, Appl. Catal. B-Environ., 187, 47 (2016).

    CAS  Google Scholar 

  37. H.-P. Kuo, S.-W. Yao and W.-Y. Hsu, Korean J. Chem. Eng., 34, 73 (2017).

    CAS  Google Scholar 

  38. L. Elsellami, N. Hafidhi, F. Dappozze, A. Houas and C. Guillard, Chinese J. Catal., 36, 1818 (2015).

    CAS  Google Scholar 

  39. G. Xiao, H. Su and T. Tan, J. Hazard. Mater., 283, 888 (2015).

    PubMed  CAS  Google Scholar 

  40. B. Liu, B. Chen, B. Y. Zhang, L. Jing, H. Zhang and K. Lee, J. Environ. Eng.-Asce., 142, 04016054 (2016).

    Google Scholar 

  41. M. Ziegmann, T. Doll and F. H. Frimmel, Acta Hydroch. Hydrob., 34, 146 (2006).

    CAS  Google Scholar 

  42. J. E. Grebel, J. J. Pignatello and W. A. Mitch, Environ. Sci. Technol., 44, 6822 (2010).

    PubMed  CAS  Google Scholar 

  43. D. Kanakaraju, C. A. Motti, B. D. Glass and M. Oelgemöller, Chemosphere, 139, 579 (2015).

    PubMed  CAS  Google Scholar 

  44. X. Kong, J. Jiang, J. Ma, Y. Yang, W. Liu and Y. Liu, Water Res., 90, 15 (2016).

    PubMed  CAS  Google Scholar 

  45. G. Li, T. An, J. Chen, G. Sheng, J. Fu, F. Chen, S. Zhang and H. Zhao, J. Hazard. Mater., 138, 392 (2006).

    PubMed  CAS  Google Scholar 

  46. L. Huang, L. Li, W. Dong, Y. Liu and H. Hou, Environ. Sci. Technol., 42, 8070 (2008).

    PubMed  CAS  Google Scholar 

  47. W. Zhang, Y. Li, Y. Su, K. Mao and Q. Wang, J. Hazard. Mater., 215-216, 252 (2012).

    PubMed  CAS  Google Scholar 

  48. J. Fang, Y. Fu and C. Shang, Environ. Sci. Technol., 48, 1859 (2014).

    PubMed  CAS  Google Scholar 

  49. Y. Wu, A. Bianco, M. Brigante, W. Dong, P. Sainte-Claire, K. Hanna and G. Mailhot, Environ. Sci. Technol., 49, 14343 (2015).

    PubMed  CAS  Google Scholar 

  50. A. Balcha, O. P. Yadav and T. Dey, Environ. Sci. Pollut. Res., 23, 25485 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2017-K14), the Scientific and Technological Project of Henan Province (Grant No. 172102210007), the Postdoctoral Startup Research Fund of Zhengzhou University, the Postdoctoral Research Sponsorship in Henan Province (Grant No. 2015004), and the Startup Research Fund of Zhengzhou University (Grant No. 1411324018). The authors are also grateful to all anonymous reviewers who contributed to improving this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, W., Ren, Y. et al. Efficient photocatalytic degradation of 2-chloro-4,6-dinitroresorcinol in salty industrial wastewater using glass-supported TiO2. Korean J. Chem. Eng. 37, 536–545 (2020). https://doi.org/10.1007/s11814-019-0448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0448-y

Keywords

Navigation