Skip to main content
Log in

Efficient treatment of anthraquinone dye wastewater by adsorption using sunflower torus-like magnesium hydroxide microspheres

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Novel sunflower torus-like magnesium hydroxide (MH) microsphere particles were prepared by a facile one-step, self-assembly method. The synthesized products and the mechanism of adsorption of samples of the anthraquinone dyes reactive blue 19 (RB19) and alizarin red S (ARS) were analyzed by different modern characterization techniques, such as X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectrometry (EDS), the Brunauer-Emmett-Teller (BET) method and Fourier transform infrared (FT-IR) spectroscopy. The adsorptive potential of the as-prepared microspheres for the removal of RB19 and ARS in aqueous solution was evaluated. The effects of multiple condition parameters, including, adsorbent dosage, adsorption time, adsorption temperature, wastewater pH, rotating speed and sodium chloride concentration on the removal of the dyes from the wastewater were studied in detail. The effect of the structural and shape properties of the MH adsorbent on the dye adsorption performances was also studied. The results showed that sunflower torus-like MH was an effective adsorbent for dye removal. The removal rates of ARS and RB19 were 91.65% and 83.03%, respectively, under the optimized conditions. The maximum adsorption capacity of the microspheres was 349.85 mg/g for ARS and 231.78 mg/g for RB19 at 25 °C. The equilibrium adsorption experimental data of the microsphere adsorption conformed to the Freundlich isotherm for ARS and the Langmuir isotherm for RB19. The adsorption kinetics experimental studies showed that the pseudo-second-order and pseudo-first-order model perfectly fit for both ARS and RB19 microsphere adsorption. RB19 and ARS were absorbed on the sunflower torus-like MH surface via the formation of H-bonds. Thus, the sunflower torus-like MH microsphere particles are an effective purifying agent for the removal of the anthraquinone dyes ARS and RB19 from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Mohammadi, H. Daemi and M. Barikani, Int. J. Biol. Macromol., 69, 447 (2014).

    PubMed  CAS  Google Scholar 

  2. M.A.A. Zaini, T.Y. Cher, M. Zakaria, M. J. Kamaruddin, S.H.M. Setapar and M.A.C. Yunus, Desalin. Water. Treat., 52, 3654 (2014).

    CAS  Google Scholar 

  3. X.H. Guan, P. Qu, X. Guan and G. S. Wang, Rsc Adv., 4, 15579 (2014).

    CAS  Google Scholar 

  4. A. Hassani, A. Khataee, S. Karaca, M. Karaca and M. Kiransan, Chem. Eng. J., 3, 2738 (2015).

    CAS  Google Scholar 

  5. M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong and A. N. Grace, Powder Technol., 279, 209 (2015).

    CAS  Google Scholar 

  6. F. Hayeeye, M. Sattar, W. Chinpa and O. Sirichote, Colloids Surf., A., 513, 259 (2017).

    CAS  Google Scholar 

  7. A. Malathi and J. Madhavan, J. Nano Res-SW., 48, 49 (2017).

    CAS  Google Scholar 

  8. A. Muthukkumaran and K. Aravamudan, J. Environ. Manage., 204, 424 (2017).

    PubMed  CAS  Google Scholar 

  9. Y. Huang, X. Zheng, S. Feng, Z. Guo and S. Liang, Colloids Surf., A., 489, 154 (2016).

    CAS  Google Scholar 

  10. A.U. Chaudhari, D. Paul, D. Dhotre and K.M. Kodam, Water Res., 122, 603 (2017).

    PubMed  CAS  Google Scholar 

  11. W.J. Epolito, Y.H. Lee, L.A. Bottomley and S.G. Pavlostathis, Dyes Pigm., 67, 35 (2005).

    CAS  Google Scholar 

  12. M. Becelic-Tomin, B. Dalmacija, L. Rajic, D. Tomasevic, D. Kerkez, M. Watson and A. Prica, Sci. World J., 2014, 234654 (2014).

    Google Scholar 

  13. C.R. Holkar, A. B. Pandit and D.V. Pinjari, Bioresour. Technol., 173, 342 (2014).

    PubMed  CAS  Google Scholar 

  14. E.R.A. Ferraz, M.D. Grando and D. P. Oliveira, J. Hazard. Mater., 192, 628 (2011).

    PubMed  CAS  Google Scholar 

  15. M. Husain and Q. Husain, Crit. Rev. Env. Sci. Technol., 38, 1 (2008).

    CAS  Google Scholar 

  16. J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto and B. Van der Bruggen, J. Membr. Sci., 477, 183 (2015).

    CAS  Google Scholar 

  17. A.K. Verma, R.R. Dash and P. Bhunia, J. Environ. Manage., 93, 154 (2012).

    PubMed  CAS  Google Scholar 

  18. S. L. Stupar, B.N. Grgur, A.E. Onjia and D.Z. Mijin, Int. J. Electrochem. Sci., 12, 8564 (2017).

    CAS  Google Scholar 

  19. Z.M. Cui, Z. Chen, C.Y. Cao, L. Jiang and W.G. Song, Chem. Commun., 49, 2332 (2013).

    CAS  Google Scholar 

  20. S. Yuan, Y. Fan, Y. Zhang, M. Tong and P. Liao, Environ. Sci. Technol., 45, 8514 (2011).

    PubMed  CAS  Google Scholar 

  21. J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han and Q. Xu, Chem. Eng. J., 259, 53 (2015).

    CAS  Google Scholar 

  22. Z. Hasan and S. H. Jhung, J. Hazard. Mater., 283, 329 (2015).

    PubMed  CAS  Google Scholar 

  23. T.R. Das, S. Patra, R. Madhuri and P.K. Sharma, J. Colloid Interface Sci., 509, 82 (2018).

    PubMed  CAS  Google Scholar 

  24. A. Paz, J. Carballo, M. Jose Perez and J. Manuel Dominguez, Chemosphere, 181, 168 (2017).

    PubMed  CAS  Google Scholar 

  25. C.N. Reddy, A.N. Kumar and S.V. Mohan, J. Hazard. Mater., 343, 49 (2018).

    PubMed  CAS  Google Scholar 

  26. J. Zhang, Z. Xiong and X. S. Zhao, J. Mater. Chem., 21, 3634 (2011).

    CAS  Google Scholar 

  27. A. Malathi, P. Arunachalam, J. Madhavan, A.M. Al-Mayouf and M.A. Ghanem, Colloids Surf., A., 537, 435 (2018).

    CAS  Google Scholar 

  28. X. Li, W. Zhang, S. Lai, Y. Gan, J. Li, T. Ye, J. You, S. Wang, H. Chen, W. Deng, Y. Liu, W. Zhang and G. Xue, Chem. Eng. J., 332, 440 (2018).

    CAS  Google Scholar 

  29. V. Vimonses, S. Lei, B. Jin, C.W. K. Chowd and C. Saint, Chem. Eng. J., 148, 354 (2009).

    CAS  Google Scholar 

  30. L. Wang and A. Wang, J. Hazard. Mater., 160, 173 (2008).

    PubMed  CAS  Google Scholar 

  31. M.K. Purkait, A. Maiti, S. DasGupta and S. De, J. Hazard. Mater., 145, 287 (2007).

    PubMed  CAS  Google Scholar 

  32. B. Acevedo, R. P. Rocha, M.F.R. Pereira, J. L. Figueiredo and C. Barriocanal, J. Colloid Interface Sci., 459, 189 (2015).

    PubMed  CAS  Google Scholar 

  33. F. Marrakchi, M. Bouaziz and B.H. Hameed, Colloids Surf., A., 535, 157 (2017).

    CAS  Google Scholar 

  34. C.C. dos Santos, R. Mouta, M. C. Castro Junior, S. A. Abreu Santana, H. A. dos Santos Silva and C.W. Brito Bezerra, Carbohyd. Polym., 180, 182 (2018).

    Google Scholar 

  35. K. Soleimani, A.D. Tehrani and M. Adeli, Ecotoxicol. Environ. Saf., 147, 34 (2018).

    PubMed  CAS  Google Scholar 

  36. L. Lefebvre, G. Agusti, A. Bouzeggane and D. Edouard, Catal. Today, 301, 98 (2018).

    CAS  Google Scholar 

  37. D. Zhao and X. Wu, Mater. Lett., 210, 354 (2018).

    CAS  Google Scholar 

  38. F. Sheng, X. Zhu, W. Wang, P. Wang and R. Zhang, J. Chem. Soc-Taip., 64, 1111 (2017).

    CAS  Google Scholar 

  39. Y. He, D. B. Jiang, J. Chen, D.Y. Jiang and Y.X. Zhang, J. Colloid Interface Sci., 510, 207 (2018).

    PubMed  CAS  Google Scholar 

  40. K. Kuang, X. Huang and G. Liao, Process Saf. Environ., 86, 182 (2008).

    CAS  Google Scholar 

  41. R. Suihkonen, K. Nevalainen, O. Orell, M. Honkanen, L. Tang, H. Zhang, Z. Zhang and J. Vuorinen, J. Mater. Sci., 47, 1480 (2012).

    CAS  Google Scholar 

  42. Z. Wu, D. Pan, Z. Chen and Z. Lin, Acta Chim. Sinica, 70, 2045 (2012).

    CAS  Google Scholar 

  43. W. Zou, L. Liu, H. Li and X. Han, Korean J. Chem. Eng., 33, 2073 (2016).

    CAS  Google Scholar 

  44. H. Li, S. Liu, J. Zhao and N. Feng, Colloids Surf. A., 494, 222 (2016).

    CAS  Google Scholar 

  45. J. Hao, C. Dai, Y. Liu and Q. Yang, Desalin. Water. Treat., 90, 252 (2017).

    CAS  Google Scholar 

  46. D. Jiang, Q. Yu, C. Huang, S. Chen, Y. Wu, J. Lin, J. Chen and P. Zhu, J. Mol. Struct., 1175, 858 (2019).

    CAS  Google Scholar 

  47. D. Jiang, Y. Yang, C. Huang, M. Huang, J. Chen, T. Rao and X. Ran, J. Hazard. Mater., 373, 131 (2019).

    PubMed  CAS  Google Scholar 

  48. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    CAS  Google Scholar 

  49. H. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  50. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    CAS  Google Scholar 

  51. A. Banaei, S. Samadi, S. Karimi, H. Vojoudi, E. Pourbasheer and A. Badiei, Powder Technol., 319, 60 (2017).

    CAS  Google Scholar 

  52. Y.D. Liang, Y. J. He, Y.H. Zhang and Q.Q. Zhu, J. Environ. Chem. Eng., 6, 416 (2018).

    CAS  Google Scholar 

  53. Y. Liu, J. Li, J. Zhu, W. Lyu, H. Xu, J. Feng and W. Yan, Colloid. Polym. Sci., 296, 1777 (2018).

    CAS  Google Scholar 

  54. W. Konicki, M. Aleksandrzak, D. Moszynski and E. Mijowska, J. Colloid Interface Sci., 496, 188 (2017).

    PubMed  CAS  Google Scholar 

  55. J.Y. Yang, X.Y. Jiang, F. P. Jiao and J. G. Yu, Appl. Surf. Sci., 436, 198 (2018).

    CAS  Google Scholar 

  56. K. Gao, Q. Chang, B. Wang, N. Zhou and T. Qing, Appl. Surf. Sci., 450, 312 (2018).

    CAS  Google Scholar 

  57. X. Wang, L. Li, Z. H. Xie and G. Yu, Electrochim. Acta, 283, 1845 (2018).

    CAS  Google Scholar 

  58. P. Casey, E. O’Connor, R. Long, B. Brennan, S. A. Krasnikov, D. O’Connell, P. K. Hurley and G. Hughes, Microelectron. Eng., 86, 1711 (2009).

    CAS  Google Scholar 

  59. D. Flahaut, M. Minvielle, A. Sambou, P. Lecour, C. Legens and J. Barbier, Fuel, 202, 307 (2017).

    CAS  Google Scholar 

  60. S. Acharya, O. Trejo, A. Dadlani, J. Torgersen, F. Berto and F. Prinz, Theor. Appl. Mech. Lett., 8, 24 (2018).

    Google Scholar 

  61. S. Shoukat, H. N. Bhatti, M. Iqbal and S. Noreen, Micropor. Mesopor. Mater., 239, 180 (2017).

    CAS  Google Scholar 

  62. R.K. Ghosh and D.D. Reddy, Water, Air, Soil Pollut., 224, 1582 (2013).

    Google Scholar 

  63. K. Li, H. Li, T. Xiao, J. Long, G. Zhang, Y. Li, X. Liu, Z. Liang, F. Zheng and P. Zhang, J. Environ. Manage., 251, 109563 (2019).

    PubMed  CAS  Google Scholar 

  64. H. J. Jang, S. B. Park, T. M. Bedair, M. K. Oh, D. J. Ahn, W. Park, Y.K. Joung and D. K. Han, J. Ind. Eng. Chem., 59, 266 (2018).

    CAS  Google Scholar 

  65. X. Sun and L. Xiang, Mater. Chem. Phys., 109, 381 (2008).

    CAS  Google Scholar 

  66. J. Lv, L. Qiu and B. Qu, J. Cryst. Growth, 267, 676 (2004).

    Google Scholar 

  67. X. Hu, H. Zhang and Z. Sun, Appl. Surf. Sci., 392, 332 (2017).

    CAS  Google Scholar 

  68. D. Aktas, N. Dizge, H. C. Yatmaz, Y. Caliskan, Y. Ozay and A. Caputcu, Water Sci. Technol., 76, 3114 (2017).

    PubMed  CAS  Google Scholar 

  69. X. Xie, X. Li, H. Luo, H. Lu, F. Chen and W. Li, J. Phys. Chem. B., 120, 4131 (2016).

    PubMed  CAS  Google Scholar 

  70. N. Van Cuong and P. Quoc Hue, Sci. World J., 2014, 273082 (2014).

    Google Scholar 

  71. M. Bagtash and J. Zolgharnein, J. Chemom., 32, 2960 (2018).

    Google Scholar 

  72. L. Fan, Y. Zhang, X. Li, C. Luo, F. Lu and H. Qiu, Colloids Surf., B., 91, 250 (2012).

    CAS  Google Scholar 

  73. O. S. Ayanda, O. S. Amodu, H. Adubiaro, G.O. Olutona, O.T. Ebenezer, S. M. Nelana and E. B. Naidoo, J. Water Reuse. Desal., 9, 83 (2019).

    CAS  Google Scholar 

  74. J. Zolgharnein, N. Asanjrani, M. Bagtash and G. Azimi, Spectrochim. Acta, 126, 291 (2014).

    CAS  Google Scholar 

  75. T.E. Dudu, D. Alpaslan, Y. Uzun and N. Aktas, Int. J. Environ. Res., 11, 557 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21076131), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJ1710245, KJ1710256, KJQN20181230, KJZD- K201801201 and KJQN201901208), and the Program of Chongqing Science and Technology Commission (cstc2018jcyjAX0813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Wang, F., Lan, B. et al. Efficient treatment of anthraquinone dye wastewater by adsorption using sunflower torus-like magnesium hydroxide microspheres. Korean J. Chem. Eng. 37, 434–447 (2020). https://doi.org/10.1007/s11814-019-0455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0455-z

Keywords

Navigation