Skip to main content

Advertisement

Log in

A Porous Material Made from Curdlan by EDTAD Functionalization Shows High Adsorption Capacity on Removal of Cu2+ and Zn2+ from Water

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A linear bacterial β-1,3-glucan, curdlan, was functionalized by ethylenediamine tetraacetic dianhydride (EDTAD) to form a porous insoluble material (Curd-E) in this study. Various technics, including FTIR, solid state 13C NMR, XRD, TGA, and SEM, were combined to determine the chemical and microscopic structure of the resultant. It's suggested that EDTAD esterified and cross-linked C6-hydroxyl groups of curdlan molecules to form the porous Curd-E. Moreover, Curd-E showed high adsorption capacity on Cu2+ (224.97 mg/g, pH 6.0) and Zn2+ (255.64 mg/g, pH 4.5) in comparison with the biomaterial and mineral based adsorbents. Data also indicated that the site affinity of Curd-E for cations was in the order of chelation > coordination/complexation > ion exchange. Besides, 2-site Langmuir and 2-step Freundlich isotherms gave the best interpretation for Cu2+ adsorption and Zn2+ adsorption, respectively. Since the adsorption capacity maintained 91.8% ± 0.8% after five cycles of adsorption/desorption, it is believed that Curd-E is suitable for removal of divalent cations in wastewater as a novel candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pacyna JM, Pacyna EG (2001) Environ Rev 9:269

    CAS  Google Scholar 

  2. Lei K, Giubilato E, Critto A, Pan H, Lin C (2016) Environ Sci Pollut Res 23:13128

    CAS  Google Scholar 

  3. Shi GL, Lou LQ, Zhang S, Xia XW, Cai QS (2013) Environ Sci Pollut Res 20:8435

    CAS  Google Scholar 

  4. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Adv Colloid Interfac 209:172

    CAS  Google Scholar 

  5. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Carbohydr Polym 83:1446

    CAS  Google Scholar 

  6. Mohan D, Pittman CU (2006) J Hazard Mater 137:762

    CAS  PubMed  Google Scholar 

  7. Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, Du B (2015) Chem Eng J 281:1

    CAS  Google Scholar 

  8. Sitko R, Musielak M, Zawisza B, Talik E, Gagor A (2016) RSC Adv 6:96595

    CAS  Google Scholar 

  9. Ahmad M, Manzoor K, Chaudhuri RR, Ikram S (2017) J Chem Eng Data 62:2044

    CAS  Google Scholar 

  10. Kara İ, Yilmazer D, Akar ST (2017) Appl Clay Sci 139:54

    CAS  Google Scholar 

  11. Fideles RA, Ferreira GMD, Teodoro FS, Adarme OFH, da Silva LHM, Gil LF, Gurgel LVA (2018) J Colloid Interface Sci 515:172

    CAS  PubMed  Google Scholar 

  12. Li M, Messele SA, Boluk Y, Gamal El-Din M (2019) Carbohydr Polym 221:231

    CAS  PubMed  Google Scholar 

  13. Qin L, Feng L, Li C, Fan Z, Zhang G, Shen C, Meng Q (2019) J Clean Prod 228:112

    CAS  Google Scholar 

  14. Noradoun CE, Cheng IF (2005) Environ Sci Technol 39:7158

    CAS  PubMed  Google Scholar 

  15. Almeida FTR, Ferreira BCS, Moreira ALDSL, Freitas RPD, Gil LF, Gurgel LVA (2016) J Colloid Interface Sci 466:297

    PubMed  Google Scholar 

  16. Júnior OK, Gurgel LVA, de Freitas RP, Gil LF (2009) Carbohydr Polym 77:643

    Google Scholar 

  17. Karnitz O, Gurgel LVA, Gil LF (2010) Carbohydr Polym 79:184

    CAS  Google Scholar 

  18. Xing Y, Liu D, Zhang L-P (2010) Desalination 259:187

    CAS  Google Scholar 

  19. Gusmão KAG, Gurgel LVA, Melo TMS, Gil LF (2013) J Environ Manage 118:135

    PubMed  Google Scholar 

  20. Moreira ALDSL, Pereira ADS, Speziali MG, Novack KM, Gurgel LVA, Gil LF (2018) Carbohydr Polym 201:218

    CAS  PubMed  Google Scholar 

  21. Nishinari K, Zhang H, Funami T (2009) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing, Cambridge, p 567

    Google Scholar 

  22. Zhang R, Edgar KJ (2014) Biomacromolecules 15:1079

    CAS  PubMed  Google Scholar 

  23. Moon C-J, Lee J-H (2005) Process Biochem 40:1279

    CAS  Google Scholar 

  24. Pelosi L, Bulone V, Heux L (2006) Carbohyd Polym 66:199

    CAS  Google Scholar 

  25. Gadd GM (2009) J Chem Technol Biotechnol 84:13

    CAS  Google Scholar 

  26. Foo KY, Hameed BH (2010) Chem Eng J 156:2

    CAS  Google Scholar 

  27. Ho YS, Ng JCY, McKay G (2000) Sep Purif Method 29:189

    CAS  Google Scholar 

  28. Ho Y-S (2006) J Hazard Mater 136:681

    CAS  PubMed  Google Scholar 

  29. Zhang R, Edgar KJ (2014) Carbohydr Polym 105:161

    CAS  PubMed  Google Scholar 

  30. Jin Y, Zhang H, Yin Y, Nishinari K (2006) Carbohydr Res 341:90

    CAS  PubMed  Google Scholar 

  31. Mohsin A, Sun J, Khan IM, Hang H, Tariq M, Tian X, Ahmed W, Niazi S, Zhuang Y, Chu J, Mohsin MZ, Salimur R, Guo M (2019) Carbohydr Polym 205:626

    CAS  PubMed  Google Scholar 

  32. Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Carbohydr Res 345:469

    CAS  PubMed  Google Scholar 

  33. Chen M, Liang P (2017) Polym Bull 74:4251

    CAS  Google Scholar 

  34. Zhai W, Danjo T, Iwata T (2018) J Polym Res 25:181

    Google Scholar 

  35. Marubayashi H, Yukinaka K, Enomoto-Rogers Y, Takemura A, Iwata T (2014) Carbohydr Polym 103:427

    CAS  PubMed  Google Scholar 

  36. Davis TA, Volesky B, Mucci A (2003) Water Res 37:4311

    CAS  PubMed  Google Scholar 

  37. Avery SV, Tobin JM (1993) Appl Environ Microbiol 59:2851

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Appl Clay Sci 38:227

    CAS  Google Scholar 

  39. Yu J, Tong M, Sun X, Li B (2008) Bioresour Technol 99:2588

    CAS  PubMed  Google Scholar 

  40. Xing Y, Deng D (2009) Sep Sci Technol 44:2117

    CAS  Google Scholar 

  41. Mi F-L, Wu S-J, Lin F-M (2015) Int J Biol Macromol 72:136

    CAS  PubMed  Google Scholar 

  42. Ahmad M, Manzoor K, Venkatachalam P, Ikram S (2016) Int J Biol Macromol 92:910

    CAS  PubMed  Google Scholar 

  43. Sargın İ, Arslan G, Kaya M (2016) React Funct Polym 98:38

    Google Scholar 

  44. Pereira FV, Gurgel LVA, Gil LF (2010) J Hazard Mater 176:856

    CAS  PubMed  Google Scholar 

  45. Li X, Tang Y, Cao X, Lu D, Luo F, Shao W (2008) Colloid Surf A 317:512

    CAS  Google Scholar 

  46. Amer MW, Khalili FI, Awwad AM (2010) J Environ Chem Ecotoxicol 2:001

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the research grants from the Shandong Provincial Key Laboratory of Microbiological Engineering (No. 0308060402), and the Fundamental Research Funds for the Central Universities (No. 30915011101). The authors thank these organizations for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Zhu, D. & Li, J. A Porous Material Made from Curdlan by EDTAD Functionalization Shows High Adsorption Capacity on Removal of Cu2+ and Zn2+ from Water. J Polym Environ 28, 1368–1377 (2020). https://doi.org/10.1007/s10924-020-01691-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01691-1

Keywords

Navigation