Skip to main content
Log in

Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cu–carbon nanotube (CNT) hybrids combine the advantages of the high electrical conductivity of Cu with the low temperature coefficient of resistance for CNTs, but require enhanced interfacing to improve the electrical performance when exposed to elevated temperatures. Herein, Ti and Ni were investigated as adhesion metals by thermally evaporating 10 nm layers onto a CNT conductor. SEM analysis shows Ni deposits as discrete nanoscale crystallites which coalesce after annealing to 400 °C in H2/Ar. Ti deposits uniformly along the CNT surface and is stable over such temperatures. A 100 nm deposition of Cu is shown to delaminate from the CNTs after annealing, and the resistance per length (R/L) increases by 40%. The Cu–Ni–CNT exhibits a 125% increase, while the Cu–Ti–CNT achieves a 12% decrease in R/L, for similar annealing conditions. Thus, Ti emerges as an effective adhesion metal, warranting its use in metal–CNT wire technologies for elevated temperature operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jarosz P, Schauerman C, Alvarenga J et al (2011) Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale 3:4542–4553. https://doi.org/10.1039/c1nr10814j

    Article  CAS  Google Scholar 

  2. Buldum A, Lu JP (2001) Contact resistance between carbon nanotubes. Phys Rev B Condens Matter Mater Phys 63:1–4. https://doi.org/10.1103/PhysRevB.63.161403

    Article  CAS  Google Scholar 

  3. Garrett MP, Ivanov IN, Gerhardt RA et al (2010) Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy. Appl Phys Lett. https://doi.org/10.1063/1.3490650

    Article  Google Scholar 

  4. Downes RD, Hao A, Park JG et al (2015) Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes. Carbon 93:953–966. https://doi.org/10.1016/j.carbon.2015.06.012

    Article  CAS  Google Scholar 

  5. Alvarenga J, Jarosz PR, Schauerman CM et al (2010) High conductivity carbon nanotube wires from radial densification and ionic doping. Appl Phys Lett. https://doi.org/10.1063/1.3506703

    Article  Google Scholar 

  6. Zhao Y, Wei J, Vajtai R et al (2011) Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep 1:1–5. https://doi.org/10.1038/srep00083

    Article  CAS  Google Scholar 

  7. Janas D, Milowska KZ, Bristowe PD, Koziol KKK (2017) Improving the electrical properties of carbon nanotubes with interhalogen compounds. Nanoscale 9:3212–3221. https://doi.org/10.1039/c7nr00224f

    Article  CAS  Google Scholar 

  8. Puchades I, Lawlor CC, Schauerman CM et al (2014) Mechanism of chemical doping in electronic-type-separated single wall carbon nanotubes towards high electrical conductivity. J Mater Chem C 2:4904–4908. https://doi.org/10.1039/c4tc00699b

    Article  CAS  Google Scholar 

  9. Cress CD, Ganter MJ, Schauerman CM et al (2017) Carbon nanotube wires with continuous current rating exceeding 20 amperes. J Appl Phys. https://doi.org/10.1063/1.4990981

    Article  Google Scholar 

  10. Li S, Zhang X, Zhao J et al (2012) Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol 72:1402–1407. https://doi.org/10.1016/j.compscitech.2012.05.013

    Article  CAS  Google Scholar 

  11. Liu P, Hu DCM, Tran TQ et al (2016) Electrical property enhancement of carbon nanotube fibers from post treatments. Colloids Surf A Physicochem Eng Asp 509:384–389. https://doi.org/10.1016/j.colsurfa.2016.09.036

    Article  CAS  Google Scholar 

  12. Di J, Fang S, Moura FA et al (2016) Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Adv Mater 28:6598–6605

    Article  CAS  Google Scholar 

  13. Leggiero AP, Trettner KJ, Ursino HL et al (2018) High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition. ACS Appl Nano Mater 2:118–126. https://doi.org/10.1021/acsanm.8b01740

    Article  CAS  Google Scholar 

  14. Subramaniam C, Sekiguchi A, Yamada T et al (2016) Nano-scale, planar and multi-tiered current pathways from a carbon nanotube–copper composite with high conductivity, ampacity and stability. Nanoscale 8:3888–3894. https://doi.org/10.1039/C5NR03762J

    Article  CAS  Google Scholar 

  15. Subramaniam C, Yamada T, Kobashi K et al (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3202

    Article  CAS  Google Scholar 

  16. Han B, Guo E, Xue X et al (2017) Fabrication and densification of high performance carbon nanotube/copper composite fibers. Carbon 123:593–604. https://doi.org/10.1016/j.carbon.2017.08.004

    Article  CAS  Google Scholar 

  17. Zou J, Liu D, Zhao J et al (2018) Ni nanobuffer layer provides light-weight CNT/Cu fibers with superior robustness, conductivity, and ampacity. ACS Appl Mater Interfaces 10:8197–8204. https://doi.org/10.1021/acsami.7b19012

    Article  CAS  Google Scholar 

  18. Milowska KZ, Ghorbani-Asl M, Burda M et al (2017) Breaking the electrical barrier between copper and carbon nanotubes. Nanoscale 9:8458–8469. https://doi.org/10.1039/C7NR02142A

    Article  CAS  Google Scholar 

  19. Zhang Y, Franklin NW, Chen RJ, Dai H (2000) Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem Phys Lett 331:35–41. https://doi.org/10.1016/S0009-2614(00)01162-3

    Article  CAS  Google Scholar 

  20. Dileo RA, Castiglia A, Ganter MJ et al (2010) Enhanced capacity and rate capability of carbon nanotube based anodes with batteries. ACS Nano 4:6121–6131

    Article  CAS  Google Scholar 

  21. Menon M, Andriotis AN, Froudakis GE (2000) Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls. Chem Phys Lett 320:425–434. https://doi.org/10.1016/S0009-2614(00)00224-4

    Article  CAS  Google Scholar 

  22. Yang CK, Zhao J, Lu JP (2002) Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes. Phys Rev B Condens Matter Mater Phys 66:414031–414034. https://doi.org/10.1103/PhysRevB.66.041403

    Article  CAS  Google Scholar 

  23. Uh HS, Park S, Kim B (2010) Enhanced field emission properties from titanium-coated carbon nanotubes. Diam Relat Mater 19:586–589. https://doi.org/10.1016/j.diamond.2009.11.021

    Article  CAS  Google Scholar 

  24. Srividya S, Gautam S, Jha P et al (2010) Titanium buffer layer for improved field emission of CNT based cold cathode. Appl Surf Sci 256:3563–3566. https://doi.org/10.1016/j.apsusc.2009.12.155

    Article  CAS  Google Scholar 

  25. Chu K, Jia CC, Li WS, Wang P (2013) Mechanical and electrical properties of carbon-nanotube-reinforced Cu–Ti alloy matrix composites. Phys Status Solidi Appl Mater Sci 210:594–599. https://doi.org/10.1002/pssa.201228549

    Article  CAS  Google Scholar 

  26. Ta BQ, Ngo AV, Nilsen O et al (2013) Deposition of palladium on suspended and locally grown carbon nanotubes using thermal evaporation. In: 2013 13th IEEE Conference on Nanotechnology, pp 1176–1179

  27. Gingery D, Bühlmann P (2008) Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon 46:1966–1972. https://doi.org/10.1016/j.carbon.2008.08.007

    Article  CAS  Google Scholar 

  28. Cox ND, Rape A, Pham M et al (2016) Free-standing silver/carbon nanotube metal matrix composite thin films. J Mater Sci 51:10935–10942. https://doi.org/10.1007/s10853-016-0305-x

    Article  CAS  Google Scholar 

  29. Scarselli M, Camilli L, Castrucci P et al (2012) In situ formation of noble metal nanoparticles on multiwalled carbon nanotubes and its implication in metal-nanotube interactions. Carbon 50:875–884. https://doi.org/10.1016/j.carbon.2011.09.048

    Article  CAS  Google Scholar 

  30. Janas D, Koziol KKK (2016) The influence of metal nanoparticles on electrical properties of carbon nanotubes. Appl Surf Sci 376:74–78. https://doi.org/10.1016/j.apsusc.2016.02.233

    Article  CAS  Google Scholar 

  31. Muratore C, Reed AN, Bultman JE et al (2013) Nanoparticle decoration of carbon nanotubes by sputtering. Carbon 57:274–281. https://doi.org/10.1016/j.carbon.2013.01.074

    Article  CAS  Google Scholar 

  32. Han B, Guo E, Xue X et al (2018) Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity. Appl Surf Sci 441:984–992. https://doi.org/10.1016/j.apsusc.2018.02.078

    Article  CAS  Google Scholar 

  33. Nanocomp Technologies, INC. A Huntsman Company. http://www.miralon.com/. Accessed 6 Nov 2019

  34. Simoes S, Calinas R, Vieira MT et al (2010) In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology. https://doi.org/10.1088/0957-4484/21/14/145701

    Article  Google Scholar 

  35. Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498:323–327. https://doi.org/10.1016/j.cplett.2010.08.082

    Article  CAS  Google Scholar 

  36. Chopra KL (1969) Thin film phenomena. McGraw-Hill, New York

    Google Scholar 

  37. Carey JD, Ong LL, Silva SRP (2003) Formation of low-temperature self-organized nanoscale nickel metal islands. Nanotechnology 14:1223–1227. https://doi.org/10.1088/0957-4484/14/11/011

    Article  CAS  Google Scholar 

  38. Sundaram R, Yamada T, Hata K, Sekiguchi A (2017) Electrical performance of lightweight CNT–Cu composite wires impacted by surface and internal Cu spatial distribution. Sci Rep. https://doi.org/10.1038/s41598-017-09279-x

    Article  Google Scholar 

  39. Kaiser AB (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep Prog Phys 64:1–49

    Article  CAS  Google Scholar 

  40. Barnes TM, Blackburn JL, Van De Lagemaat J et al (2008) Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks. ACS Nano 2:1968–1976. https://doi.org/10.1021/nn800194u

    Article  CAS  Google Scholar 

  41. Colasanti S, Robbiano V, Loghin FC et al (2016) Experimental and computational study on the temperature behavior of CNT networks. IEEE Trans Nanotechnol 15:171–178. https://doi.org/10.1109/TNANO.2015.2510965

    Article  CAS  Google Scholar 

  42. Roch A, Greifzu M, Talens ER et al (2015) Ambient effects on the electrical conductivity of carbon nanotubes. Carbon 95:347–353. https://doi.org/10.1016/j.carbon.2015.08.045

    Article  CAS  Google Scholar 

  43. Kasap SO (2006) Principles of electronic materials and devices, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  44. Sung CM, Tai MF (1997) Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure. Int J Refract Met Hard Mater 15:237–256. https://doi.org/10.1016/S0263-4368(97)00003-6

    Article  CAS  Google Scholar 

  45. Lim SC, Jang JH, Bae DJ et al (2010) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95:264103. https://doi.org/10.1063/1.3255016

    Article  CAS  Google Scholar 

  46. Durgun E, Dag S, Bagci VMK et al (2003) Systematic study of adsorption of single atoms on a carbon nanotube. Phys Rev B Condens Matter Mater Phys 67:1–4. https://doi.org/10.1103/PhysRevB.67.201401

    Article  CAS  Google Scholar 

  47. Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77:3015–3017. https://doi.org/10.1063/1.1324731

    Article  CAS  Google Scholar 

  48. Zhao J, Qiu Q, Wang B et al (2001) Geometric and electronic properties of titanium clusters studied by ultrasoft pseudopotential. Solid State Commun 118:157–161. https://doi.org/10.1016/S0038-1098(01)00044-8

    Article  CAS  Google Scholar 

  49. Yi C, Bagchi S, Dmuchowski CM et al (2018) Direct nanomechanical characterization of carbon nanotube–titanium interfaces. Carbon 132:548–555. https://doi.org/10.1016/j.carbon.2018.02.069

    Article  CAS  Google Scholar 

  50. Ahmad HM, Greig D (1974) The electrical resistivity and thermopower of nickel–copper alloys. Le J Phys Colloq 35:C4-223–C4-226. https://doi.org/10.1051/jphyscol:1974440

    Article  Google Scholar 

  51. Bakonyi I, Tóth-Kadar E, Tóth J et al (1999) Magnetic and electrical transport properties of electrodeposited Ni–Cu alloys and multilayers. J Phys Condens Matter 11:963–973. https://doi.org/10.1088/0953-8984/11/4/004

    Article  CAS  Google Scholar 

  52. Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:438–442. https://doi.org/10.1088/0957-4484/14/4/306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Grant DE-EE0007863. The contents of this document should not be construed as asserting or implying U.S. Government authentication of information or endorsement of the authors’ views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Landi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIntyre, D.J., Hirschman, R.K., Puchades, I. et al. Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer. J Mater Sci 55, 6610–6622 (2020). https://doi.org/10.1007/s10853-020-04457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04457-1

Navigation