Skip to main content

Advertisement

Log in

Carbon and nitrogen stable isotope analyses indicate the influence of land use on allochthonous versus autochthonous trophic pathways for a freshwater Atyid shrimp

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic ecosystem community dynamics are affected by anthropogenic pressures and subsequent environmental change. This study investigated the influence of land use in the Richmond River Catchment (New South Wales, Australia) on dietary sources for the freshwater Atyid shrimp Paratya australiensis. Carbon and nitrogen stable isotopes and Bayesian modelling determined the contribution to shrimp diets of two autochthonous sources (microphytobenthos and macrophytes) and two allochthonous sources (C3 and C4 plants) across sites characterised by five different land uses: forest, macadamia, grazing, sugar cane and urban. It was hypothesised that allochthonous sources would contribute more to shrimp diets at sites with more extensive riparian zones, but this was not substantiated. Autochthonous sources dominated shrimp diets across all land uses, although their dietary contribution varied with land use, likely reflecting changes in riparian and in-stream habitats and source availability. Autochthonous contributions were lowest and allochthonous contributions were highest, for shrimp at grazing and sugar cane sites, despite minimal riparian vegetation. A complex array of interactions may influence diets of in-stream consumers. This micro-catchment scale study demonstrated that land use changes play a key role in affecting carbon and nitrogen sources for P. australiensis and have the potential to change community dynamics in freshwater streams. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this article and its supplementary information files.

References

  • Abrantes, K., R. Johnston, R. Connolly & M. Sheaves, 2015. Importance of mangrove carbon for aquatic food webs in wet-dry tropical estuaries. Journal of the Coastal and Estuarine Research Federation 38: 383–399.

    CAS  Google Scholar 

  • Abrantes, K. G., A. Barnett, T. R. Marwick & S. Bouillon, 2013. Importance of terrestrial subsidies for estuarine food webs in contrasting East African catchments. Ecosphere 4: 1–33.

    Google Scholar 

  • Arnaiz, O. L., A. L. Wilson, R. J. Watts & M. M. Stevens, 2011. Influence of riparian condition on aquatic macroinvertebrate communities in an agricultural catchment in south-eastern Australia. Ecological Research 26: 123–131.

    CAS  Google Scholar 

  • Bellamy, A. R., J. E. Bauer & A. G. Grottoli, 2017. Influence of land use and lithology on sources and ages of nutritional resources for stream macroinvertebrates: a multi-isotopic approach. Aquatic Sciences 79: 925–939.

    CAS  Google Scholar 

  • Bentivoglio, F., E. Calizza, D. Rossi, P. Carlino, G. Careddu, L. Rossi & M. L. Costantini, 2016. Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia 770: 257–272.

    CAS  Google Scholar 

  • Brett, M. T., S. E. Bunn, S. Chandra, A. W. Galloway, F. Guo, M. J. Kainz, P. Kankaala, D. C. Lau, T. P. Moulton & M. E. Power, 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62: 833–853.

    CAS  Google Scholar 

  • Brito, E. F., T. P. Moulton, M. L. De Souza & S. E. Bunn, 2006. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecology 31: 623–633.

    Google Scholar 

  • Bunn, S. E. & P. I. Boon, 1993. What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96: 85–94.

    PubMed  Google Scholar 

  • Bunn, S. E., P. M. Davies & D. M. Kellaway, 1997. Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream. Marine and Freshwater Research 48: 173–179.

    CAS  Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345.

    Google Scholar 

  • Bunn, S. E., P. M. Davies & M. Winning, 2003. Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48: 619–635.

    Google Scholar 

  • Burns, A. & D. S. Ryder, 2001. Potential for biofilms as biological indicators in Australian riverine systems. Ecological Management & Restoration 2: 53–64.

    Google Scholar 

  • Burns, A. & K. F. Walker, 2000. Biofilms as food for decapods (Atyidae, Palaemonidae) in the River Murray, South Australia. Hydrobiologia 437: 83–90.

    Google Scholar 

  • Calizza, E., M. Costantini, D. Rossi, P. Carlino & L. Rossi, 2012. Effects of disturbance on an urban river food web. Freshwater Biology 57: 2613–2628.

    Google Scholar 

  • Clapcott, J. E. & S. E. Bunn, 2003. Can C4 plants contribute to aquatic food webs of subtropical streams? Freshwater Biology 48: 1105–1116.

    Google Scholar 

  • Coat, S., D. Monti, C. Bouchon & G. Lepoint, 2009. Trophic relationships in a tropical stream food web assessed by stable isotope analysis. Freshwater Biology 54: 1028–1041.

    CAS  Google Scholar 

  • Dawson, K., 2002. Fish kill events and habitat losses of the Richmond River, NSW Australia: an overview. Journal of Coastal Research 36: 216–221.

    Google Scholar 

  • Death, R. G. & K. J. Collier, 2010. Measuring stream macroinvertebrate responses to gradients of vegetation cover: when is enough enough? Freshwater Biology 55: 1447–1464.

    Google Scholar 

  • Delong, M. & J. Thorp, 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147: 76–85.

    PubMed  Google Scholar 

  • Dodds, W. K., E. Martí, J. L. Tank, J. Pontius, S. K. Hamilton, N. B. Grimm, W. B. Bowden, W. H. McDowell, B. J. Peterson & H. M. Valett, 2004. Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia 140: 458–467.

    PubMed  Google Scholar 

  • Douglas, M. M., S. E. Bunn & P. M. Davies, 2005. River and wetland food webs in Australia’s wet–dry tropics: general principles and implications for management. Marine and Freshwater Research 56: 329–342.

    Google Scholar 

  • Dudgeon, D., F. K. Cheung & S. K. Mantel, 2010. Foodweb structure in small streams: do we need different models for the tropics? Journal of the North American Benthological Society 29: 395–412.

    Google Scholar 

  • Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley & K. L. Schulz, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    CAS  PubMed  Google Scholar 

  • Finlay, J. C., 2001. Stable carbon isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.

    Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecology. Springer Science & Business Media LLC., New York, USA: 1–308.

    Google Scholar 

  • Hamilton, S. K., J. L. Tank, D. F. Raikow, E. R. Siler, N. J. Dorn & N. E. Leonard, 2004. The role of instream vs allochthonous N in stream food webs: modeling the results of an isotope addition experiment. Journal of the North American Benthological Society 23: 429–448.

    Google Scholar 

  • Hancock, M. A. & S. E. Bunn, 1997. Population dynamics and life history of Paratya australiensis Kemp, 1917 (Decapoda: Atyidae) in upland rainforest streams, south-eastern Queensland, Australia. Marine and Freshwater Research 48: 361–369.

    Google Scholar 

  • Hette-Tronquart, N., T. Oberdorff, E. Tales, A. Zahm & J. Belliard, 2018. Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes. Environmental Science and Pollution Research 25: 23583–23594.

    CAS  PubMed  Google Scholar 

  • Hossain, S. & B. Eyre, 2002. Suspended sediment exchange through the sub-tropical Richmond River Estuary, Australia: A balance approach. Estuarine, Coastal and Shelf Science 55: 579–586.

    Google Scholar 

  • Ishikawa, N., F. Hyodo & I. Tayasu, 2013. Use of carbon-13 and carbon-14 natural abundances for stream food web studies. Ecological Research 28: 759–769.

    CAS  Google Scholar 

  • Jacquemin, S. J., C. Miller & M. Pyron, 2013. Identifying local scale food web variation using stable δ13C and δ15N isotopes in a Central Indiana reservoir and downstream river. Proceedings of the Indiana Academy of Science 122: 62–68.

    Google Scholar 

  • Jardine, T. D., N. E. Pettit, D. M. Warfe, B. J. Pusey, D. P. Ward, M. M. Douglas, P. M. Davies & S. E. Bunn, 2012. Consumer–resource coupling in wet–dry tropical rivers. Journal of Animal Ecology 81: 310–322.

    PubMed  Google Scholar 

  • Jardine, T. D., R. J. Hunt, S. J. Faggotter, D. Valdez, M. A. Burford & S. E. Bunn, 2013. Carbon from periphyton supports fish biomass in waterholes of a wet–dry tropical river. River Research and Applications 29: 560–573.

    Google Scholar 

  • Jardine, T. D., R. Woods, J. Marshall, J. Fawcett, J. Lobegeiger, D. Valdez & M. J. Kainz, 2015. Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals. Ecology 96: 3257–3269.

    PubMed  Google Scholar 

  • Jaschinski, S., T. Hansen & U. Sommer, 2008. Effects of acidification in multiple stable isotope analyses. Limnology and Oceanography: Methods 6: 12–15.

    CAS  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Lau, D. C., K. M. Leung & D. Dudgeon, 2008. Experimental dietary manipulations for determining the relative importance of allochthonous and autochthonous food resources in tropical streams. Freshwater Biology 53: 139–147.

    CAS  Google Scholar 

  • Lau, D. C., K. M. Leung & D. Dudgeon, 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28: 426–439.

    Google Scholar 

  • Layman, C. A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological reviews 87: 545–562.

    PubMed  Google Scholar 

  • Lewis Jr., W. M., S. K. Hamilton, M. A. Rodríguez, J. F. Saunders III & M. A. Lasi, 2001. Foodweb analysis of the Orinoco floodplain based on production estimates and stable isotope data. Journal of the North American Benthological Society 20: 241–254.

    Google Scholar 

  • Lohse, L., R. T. Kloosterhuis, H. C. de Stigter, W. Helder, W. van Raaphorst & T. C. van Weering, 2000. Carbonate removal by acidification causes loss of nitrogenous compounds in continental margin sediments. Marine Chemistry 69: 193–201.

    CAS  Google Scholar 

  • Magierowski, R. H., P. E. Davies, S. M. Read & N. Horrigan, 2012. Impacts of land use on the structure of river macroinvertebrate communities across Tasmania, Australia: spatial scales and thresholds. Marine and Freshwater Research 63: 762–776.

    Google Scholar 

  • March, J. G. & C. M. Pringle, 2003. Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica 35: 84–93.

    Google Scholar 

  • Mayer, M. S. & G. E. Likens, 1987. The importance of algae in a shaded headwater stream as food for an abundant caddisfly (Trichoptera). Journal of the North American Benthological Society 6: 262–269.

    Google Scholar 

  • McKee, L. J., B. D. Eyre, S. Hossain & P. R. Pepperell, 2001. Influence of climate, geology and humans on spatial and temporal nutrient geochemistry in the subtropical Richmond River catchment, Australia. Marine and Freshwater Research 52: 235–248.

    CAS  Google Scholar 

  • McNeely, C., J. C. Finlay & M. E. Power, 2007. Grazer traits, competition, and carbon sources to a headwater-stream food web. Ecology 88: 391–401.

    PubMed  Google Scholar 

  • Melville, A. J. & R. M. Connolly, 2005. Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Marine Biology 148: 363–371.

    Google Scholar 

  • Moulton, T. P., M. L. Souza, E. F. Brito, M. R. A. Braga & S. E. Bunn, 2012. Strong interactions of Paratya australiensis (Decapoda:Atyidae) on periphyton in an Australian subtropical stream. Marine and Freshwater Research 63: 834–844.

    Google Scholar 

  • Neres-Lima, V., E. F. Brito, F. A. Krsulović, A. M. Detweiler, A. E. Hershey & T. P. Moulton, 2016. High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. International Review of Hydrobiology 101: 132–142.

    Google Scholar 

  • Oakes, J. M. & B. D. Eyre, 2014. Transformation and fate of microphytobenthos carbon in subtropical, intertidal sediments: potential for long-term carbon retention revealed by 13C labeling. Biogeosciences 11: 1927–1940.

    Google Scholar 

  • Oakes, J. M., B. D. Eyre, J. J. Middelburg & H. T. S. Boschker, 2010a. Composition, production, and loss of carbohydrates in subtropical shallow subtidal sandy sediments: Rapid processing and long-term retention revealed by 13C-labeling. Limnology and Oceanography 55: 2126–2138.

    CAS  Google Scholar 

  • Oakes, J. M., B. D. Eyre, D. J. Ross & S. D. Turner, 2010b. Stable isotopes trace estuarine transformations of carbon and nitrogen from primary- and secondary-treated paper and pulp mill effluent. Environmental Science and Technology 44: 7411–7417.

    CAS  PubMed  Google Scholar 

  • Oakes, J. M., A. T. Revill, R. M. Connolly & S. I. Blackburn, 2005. Measuring carbon isotope ratios of microphytobenthos using compound-specific stable isotope analysis of phytol. Limnology and Oceanography: Methods 3: 511–519.

    Google Scholar 

  • Oeding, S., K. H. Taffs, B. Cox, A. Reichelt-Brushett & C. Sullivan, 2018. The influence of land use in a highly modified catchment: Investigating the importance of scale in riverine health assessment. Journal of Environmental Management 206: 1007–1019.

    PubMed  Google Scholar 

  • Padmalal, D. & K. Maya, 2014. Rivers-Structure and Functions Sand Mining. Springer, Berlin: 9–22.

    Google Scholar 

  • Parnell, A., & Jackson, A. 2013. SIAR: Stable Isotope Analysis in R. R package version 4.2. Retrieved 23 March, 2014, from http://CRAN.

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5: 1–5.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Google Scholar 

  • Pingram, M. A., K. J. Collier, D. P. Hamilton, B. O. David & B. J. Hicks, 2012. Carbon sources supporting large river food webs: a review of ecological theories and evidence from stable isotopes. Freshwater Reviews 5: 85–103.

    Google Scholar 

  • Pingram, M. A., K. J. Collier, D. P. Hamilton, B. J. Hicks & B. O. David, 2014. Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729: 107–131.

    CAS  Google Scholar 

  • Piola, R. F., I. M. Suthers & D. Rissik, 2008. Carbon and nitrogen stable isotope analysis indicates freshwater shrimp Paratya australiensis Kemp, 1917 (Atyidae) assimilate cyanobacterial accumulations. Hydrobiologia 608: 121–132.

    Google Scholar 

  • Pitt, K. A., R. M. Connolly & P. Maxwell, 2009. Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades. Marine Pollution Bulletin 58: 573–580.

    CAS  PubMed  Google Scholar 

  • Power, M. E. & W. E. Dietrich, 2002. Food webs in river networks. Ecological Research 17: 451–471.

    Google Scholar 

  • Pusey, B. J. & A. H. Arthington, 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research 54: 1–16.

    Google Scholar 

  • Riley, W., T. Potter, J. Biggs, A. Collins, H. Jarvie, J. Jones, M. Kelly-Quinn, S. Ormerod, A. D. Sear, R. Wilby, S. Broadmeadow, D. C. Brown, P. Chanin, G. Copp, I. Cowx, A. Grogan, D. Hornby, D. Huggett, M. Kelly & M. Siriwardena, 2018. Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment 645: 1598–1616.

    CAS  PubMed  Google Scholar 

  • Ryder, D., Mika, S., Richardson, M., Schmidt, J., & Fitzgibbon, B. 2015. Richmond Ecohealth Project 2014: Assessment of River and Estuarine Condition. Final Technical Report. University of New England, Armidale.

  • Smith, P. E., J. M. Oakes & B. D. Eyre, 2016. Recovery of nitrogen stable isotope signatures in the food web of an intermittently open estuary following removal of wastewater loads. Estuarine, Coastal and Shelf Science 182: 170–178.

    CAS  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. V. Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Google Scholar 

  • Votier, S. C., S. Bearhop, M. J. Witt, R. Inger, D. Thompson & J. Newton, 2010. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. Journal of Applied Ecology 47: 487–497.

    Google Scholar 

  • Winemiller, K. O. 2004. Floodplain river food webs: generalizations and implications for fisheries management. Paper presented at the Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. (pp. 285–309).

Download references

Acknowledgements

This project was supported by an Australian Research Council Linkage Grant (LP130100498). We would like to thank Southern Cross University for their support with field and laboratory expenses. We thank Jenine Dempster, Matt Veness, and Brendan Cox for their assistance with field work, Matheus Carvalho for isotope analysis and Alison Bowling for help with statistics. The authors also thank the landholders of the RRC who allowed access to their properties and the three anonymous reviewers for comments that helped improve the manuscript.

Funding

This study was partially funded by an Australian Research Council Linkage Grant (LP130100498).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sue Oeding. The first draft of the manuscript was written by Sue Oeding and all authors critically revised and provided intellectual contribution to the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sue Oeding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oeding, S., Taffs, K.H., Reichelt-Brushett, A. et al. Carbon and nitrogen stable isotope analyses indicate the influence of land use on allochthonous versus autochthonous trophic pathways for a freshwater Atyid shrimp. Hydrobiologia 847, 2377–2392 (2020). https://doi.org/10.1007/s10750-020-04209-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04209-x

Keywords

Navigation