Skip to main content
Log in

CCMRD: a solid-state NMR database for complex carbohydrates

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Carbohydrates are essential to various life activities in living organisms and serve as the central component in many biomaterials. As an emerging technique with steadily improving resolution, solid-state Nuclear Magnetic Resonance (NMR) spectroscopy has the unique capability in revealing the polymorphic structure and heterogeneous dynamics of insoluble complex carbohydrates. Here, we report the first solid-state NMR database for complex carbohydrates, Complex Carbohydrates Magnetic Resonance Database (CCMRD). This database currently holds the chemical shift information of more than four hundred solid-state NMR compounds and expects rapid expansion. CCMRD provides open portals for data deposition and supports search options based on NMR chemical shifts, carbohydrate names, and compound classes. With the timely implementation, this platform will facilitate spectral analysis and structure determination of carbohydrates and promote software development to benefit the research community. The database is freely accessible at www.ccmrd.org.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCMRD:

Complex Carbohydrates Magnetic Resonance Database

ssNMR:

Solid-state NMR

References

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls. Garland Science, New York

    Google Scholar 

  • Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G (2015) High-resolution proton-detected NMR of proteins at very fast MAS. J Magn Reson 253:36–49

    ADS  Google Scholar 

  • Arnold AA, Genard B, Zito F, Tremblay R, Warschawski DE, Marcotte I (2015) Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim Biophys Acta 1848:369–377

    Google Scholar 

  • Arnold AA, Bourgouin JP, Genard B, Warschawski DE, Tremblay R, Marcotte I (2018) Whole cell solid-state NMR study of Chlamydomonas reinhardtii microalgae. J Biol NMR 70:123–131

    Google Scholar 

  • Aspinall GO (1983) The polysaccharides, 1st edn. Academic Press, New York

    Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    ADS  Google Scholar 

  • Bardet M, Emsley L, Vincendon M (1997) Two-dimensional spin-exchange solid-state NMR studies of 13C-enriched wood. Solid State Nucl Mag 8:25–32

    Google Scholar 

  • Böhm M, Bohne-Lang A, Frank M, Loss A, Rojas-Macias MA, Lütteke T (2018) Glycosciences. DB: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Res 47:D1195–D1201

    Google Scholar 

  • Bubb WA (2003) NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concept Magn Reson A 19:1–19

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Cadars S, Lesage A, Emsley L (2005) Chemical shift correlations in disordered solids. J Am Chem Soc 127:4466–4476

    Google Scholar 

  • Chatterjee S, Prados-Rosales R, Itin B, Casadevall A, Stark RE (2015) Solid-state NMR reveals the carbon-based molecular architecture of cryptococcus neoformans fungal eumelanins in the cell wall. J Biol Chem 290:13779–13790

    Google Scholar 

  • Cheng K, Sorek H, Zimmermann H, Wemmer DE, Pauly M (2013) Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent. Anal Chem 85:3213–3221

    Google Scholar 

  • Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering: a review. Carbohydr Polym 92:1262–1279

    Google Scholar 

  • Duus JØ, Gotfredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100:4589–4614

    Google Scholar 

  • Gan ZH et al (2017) NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet. J Magn Reson 284:125–136

    ADS  Google Scholar 

  • Grantham NJ et al (2017) An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat Plants 3:859–865

    Google Scholar 

  • Greenspan J, Bulger B (2001) MySQL/PHP database applications. Wiley, New York

    MATH  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    ADS  Google Scholar 

  • Jaroniec CP (2015) Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. J Magn Reson 253:50–59

    ADS  Google Scholar 

  • Kang B, Opatz T, Landfester K, Wurm FR (2015) Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev 44:8301–8325

    Google Scholar 

  • Kang X et al (2018) Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun 9:2747

    ADS  Google Scholar 

  • Kang X, Kirui A, Widanage MCD, Mentink-Vigier F, Cosgrove DJ, Wang T (2019) Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 10:347

    ADS  Google Scholar 

  • Kern T et al (2008) Toward the characterization of peptidoglycan structure and protein-peptidoglycan interactions by solid-state NMR spectroscopy. J Am Chem Soc 130:5618–5619

    Google Scholar 

  • Kern T et al (2010) Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J Am Chem Soc 132:10911–10919

    Google Scholar 

  • Kim SJ, Chang J, Singh M (2015) Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. BBA-Biomembranes 1848:350–362

    Google Scholar 

  • Kirui A, Ling Z, Kang X, Dickwella Widanage MC, Mentink-Vigier F, French AD, Wang T (2019) Atomic resolution of cotton cellulose structure enabled by dynamic nuclear polarization solid-state NMR. Cellulose 26:329–339

    Google Scholar 

  • Laguri C et al (2018) Solid state NMR studies of intact lipopolysaccharide endotoxin. ACS Chem Biol 13:2106–2113

    Google Scholar 

  • Latge JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Google Scholar 

  • Lindberg B (1990) Components of bacterial polysaccharides. Adv Carbohydr Chem Biochem 48:279–318

    Google Scholar 

  • Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:643–691

    Google Scholar 

  • Mansfield SD, Kim H, Lu FC, Ralph J (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7:1579–1589

    Google Scholar 

  • McNaught AD (1996) Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl Chem 68:1919–2008

    Google Scholar 

  • Neelamegham S et al (2019) Updates to the symbol nomenclature for glycans guidelines. Glycobiology 29:620–624

    Google Scholar 

  • Newman RH, Davies LM, Harris PJ (1996) Solid-state 13C nuclear magnetic resonance characterization of cellulose in the cell walls of Arabidopsis thaliana leaves. Plant Physiol 111:475–485

    Google Scholar 

  • Phyo P, Hong M (2019) Fast MAS 1H–13C correlation NMR for structural investigations of plant cell walls. J Biomol NMR 73:661–674

    Google Scholar 

  • Phyo P, Wang T, Xiao C, Anderson CT, Hong M (2017) Effects of pectin molecular weight changes on the structure, dynamics, and polysaccharide interactions of primary cell walls of arabidopsis thaliana: insights from solid-state NMR. Biomacromolecules 18:2937–2950

    Google Scholar 

  • Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2:817

    Google Scholar 

  • Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci USA 109:4863–4868

    ADS  Google Scholar 

  • Rossini AJ, Zagdoun A, Lelli M, Lesage A, Coperet C, Emsley L (2013) Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 46:1942–1951

    Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78:614–649

    Google Scholar 

  • Saliba EP et al (2017) Electron decoupling with dynamic nuclear polarization in rotating Solids. J Am Chem Soc 139:6310–6313

    Google Scholar 

  • Schmidt-Rohr K, Fritzsching KJ, Liao SY, Hong M (2012) Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination. J Biomol NMR 54:343–353

    Google Scholar 

  • Sergeyev IV, Itin B, Rogawski R, Day LA, McDermott AE (2017) Efficient assignment and NMR analysis of an intact virus using sequential side-chain correlations and DNP sensitization. Proc Natl Acad Sci USA 114:5171–5176

    Google Scholar 

  • Simmons TJ et al (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun 7:13902

    ADS  Google Scholar 

  • Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053

    Google Scholar 

  • Smith AN, Long JR (2016) Dynamic nuclear polarization as an enabling technology for solid state nuclear magnetic resonance spectroscopy. Anal Chem 88:122–132

    Google Scholar 

  • Stauffer M (2016) Laravel: up and running: a framework for building modern PHP apps. O'Reilly Media Inc, Newton

    Google Scholar 

  • Struppe J et al (2017) Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz. Solid State Nucl Magn Reson 87:117–125

    Google Scholar 

  • Takahashi H, Lee D, Dubois L, Bardet M, Hediger S, De Paepe G (2012) Rapid natural-abundance 2D 13C–13C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. Angew Chem Int Edit 51:11766–11769

    Google Scholar 

  • Takahashi H, Ayala I, Bardet M, De Paepe G, Simorre JP, Hediger S (2013) Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc 135:5105–5110

    Google Scholar 

  • Terrett OM et al (2019) Molecular architecture of softwood revealed by solid-state NMR. Nat Commun 10:4978

    ADS  Google Scholar 

  • Thieker DF, Hadden JA, Schulten K, Woods RJ (2016) 3D implementation of the symbol nomenclature for graphical representation of glycans. Glycobiology 26:786–787

    Google Scholar 

  • Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L (2018) Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359:334–338

    ADS  Google Scholar 

  • Toukach PV, Egorova KS (2015) Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nucleic Acids Res 44:D1229–D1236

    Google Scholar 

  • Wang T, Salazar A, Zabotina OA, Hong M (2014) Structure and dynamics of brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. Biochemistry 53:2840–2854

    Google Scholar 

  • Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168:871–884

    Google Scholar 

  • Wang T, Chen Y, Tabuchi A, Cosgrove DJ, Hong M (2016a) The target of β-expansin EXPB1 in maize cell walls from binding and solid-state NMR studies. Plant Physiol 172:2107–2119

    Google Scholar 

  • Wang T, Phyo P, Hong M (2016b) Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nucl Magn Reson 78:56–63

    Google Scholar 

  • Wang T, Yang H, Kubicki JD, Hong M (2016c) Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and density functional theory calculations. Biomacromolecules 17:2210–2222

    Google Scholar 

  • Werby SH, Cegelski L (2018) Spectral comparisons of mammalian cells and intact organelles by solid-state NMR. J Struc Biol 206:49–54

    Google Scholar 

  • White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409

    Google Scholar 

  • Wormald MR, Petrescu AJ, Pao Y-L, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Science Foundation NSF MCB-1942665 and OIA-1833040.

Author information

Authors and Affiliations

Authors

Contributions

XK and TW designed the database and wrote the database; XK, WZ, AK, MCDW and UO indexed the data; XK and WZ deposited the data and programmed the database and interface.

Corresponding authors

Correspondence to Xue Kang or Tuo Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2020_304_MOESM1_ESM.pdf

Organizational schema of CCMRD (Figure S1); instructions and web interfaces for data search (Figures S2) and user deposition (Figure S3). Supplementary file1 (PDF 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, X., Zhao, W., Dickwella Widanage, M.C. et al. CCMRD: a solid-state NMR database for complex carbohydrates. J Biomol NMR 74, 239–245 (2020). https://doi.org/10.1007/s10858-020-00304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-020-00304-2

Keywords

Navigation