Skip to main content
Log in

Numerical analysis to predict the optimum configuration of fin and tube heat exchanger with rectangular vortex generators for enhanced thermohydraulic performance

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The current numerical study has explored the effect of incorporation of rectangular winglets with circular, flat and oval tubes on the performance of compact heat exchangers. Rectangular winglet pairs are mounted behind the tubes at a span angle of 5° to obtain the enhanced performance. The obtained results show that fin and oval tube heat exchanger (FOTHE) having rectangular winglet pairs (RWPs) provides the higher thermal-hydraulic performance compared to the other configurations, on the basis of area goodness factor (j/f) and heat transfer rate per unit fan power consumption (Q/Pf). MOORA method also incorporated to obtain the performance ranking of the considered configurations of compact heat exchangers. The optimal configuration i.e. finned tube heat exchanger having oval tubes with rectangular winglet pairs, provides an increment of 13.84% and 9.99% in the heat transfer coefficient of air (h) at Re = 400 and Re = 900 respectively, compared to the baseline case. Moreover, an appreciable reduction of 26.61% and 29.79% in the pressure drop (∆p), compared to the baseline case, is obtained at Re = 400 and Re = 900 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A T :

Total heat transfer surface area (m2)

A min :

Minimum flow area (m2).

c p :

Specific heat (J kg−1 K−1).

D h :

Hydraulic diameter of heat exchanger (m).

D ht :

Hydraulic diameter of tube (m).

f :

Friction factor.

Fp :

Fin Pitch.

h :

Heat transfer coefficient of air (Wm-2 K-1).

H :

Channel height (m).

Hw :

Winglet height (m).

j :

Colburn factor.

L :

Flow length (m).

k f :

Thermal conductivity of fluid (W m-1 K-1).

Lw :

Winglet length (m).

Nu :

Average Nusselt number.

Q :

Heat transfer capacity (W).

Re :

Reynolds number.

St :

Stanton number.

ΔT :

Log mean temperature difference (K).

\( \overline{T} \) :

Bulk average temperature (K).

p :

Pressure (Pa).

P f :

Fan power.

\( \overline{p} \) :

Bulk average pressure (Pa).

∆p :

Pressure drop (Pa),

u :

Velocity in x- direction (m s−1).

v :

Velocity in y-direction (m s−1).

V m :

Mean velocity at Amin (m s−1).

w :

Velocity in z-direction (m s−1).

μ :

Dynamic viscosity (Pa-s).

ρ :

Density (kg m−3).

λ :

Thermal conductivity (W m−1 K−1).

References

  1. Jacobi AM, Shah RK (1995) Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent Progress. Exp Thermal Fluid Sci 11:295–309

    Article  Google Scholar 

  2. Leu JS, Wu YH, Jang JY (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transf

  3. Joardar A, Jacobi AM (2008) Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. Int J Refrig 31:87–97

    Article  Google Scholar 

  4. He YL, Chu P, Tao WQ, Zhang YW, Xie T (2013) Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators. Applied. Thermal. Eng. 61:770–783

    Article  Google Scholar 

  5. Sinha A, Chattopadhyay H, Iyengar AK, Biswas G (2016) Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators. Int J Heat Mass Transf 101:667–681

    Article  Google Scholar 

  6. Zeeshan M, Hazarika SA, Nath S, Bhanja D (2017) Numerical investigation on the performance of fin and tube heat exchangers using rectangular vortex generators, AIP Conference Proceedings 1859, 020011, doi: https://doi.org/10.1063/1.4990164

  7. Zeeshan M, Nath S, Bhanja D, Das A (2018) Numerical investigation for the optimal placements of rectangular vortex generators for improved thermal performance of fin-and-tube heat exchangers. Appl Therm Eng 136:589–601

    Article  Google Scholar 

  8. Huisseune H, Joen CT, Jaeger PD, Ameel B, Schampheleire SD, Paepe MD (2013) Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. Int J Heat Mass Transf 57:58–72

    Article  Google Scholar 

  9. Gholami AA, Wahid MA, Mohammed HA (2014) Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. Int Commun Heat Mass Transf 54:132–140

    Article  Google Scholar 

  10. Wang CC, Chen KY, Liaw JS, Tseng CY (2015) An experimental study of the air-side performance of fin-and-tube heat exchangers having plain, louver, and semi-dimple vortex generator configuration. Int J Heat Mass Transf 80:281–287

    Article  Google Scholar 

  11. Oneissi M, Habchi C, Russeil S, Bougeard D, Lemenand T (2016) Novel design of delta winglet pair vortex generator for heat transfer enhancement. Int J Therm Sci 109:1–9

    Article  Google Scholar 

  12. Lu G, Zhaou G (2016) Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes. Int J Heat Mass Transf 102:679–690

    Article  Google Scholar 

  13. Lu G, Zhai X (2019) Effects of curved vortex generators on the air-side performance of fin-and-tube heat exchangers. Int J Therm Sci 136(2018):509–518

    Article  Google Scholar 

  14. Han H, Wang S, Sun L, Li Y, Wang S (2019) Numerical study of thermal and flow characteristics for a fin-and-tube heat exchanger with arc winglet type vortex generators. Int J Refrig 98:61–69

    Article  Google Scholar 

  15. Kashyap U, Das K, Debnath BK (2018) Effect of surface modification of a rectangular vortex generator on heat transfer rate from a surface to fluid. Int J Therm Sci 127:61–78

    Article  Google Scholar 

  16. Kashyap U, Das K, Debnath BK (2018) Effect of surface modification of a rectangular vortex generator on heat transfer rate from a surface to fluid: an extended study. Int J Therm Sci 134(May):269–281

    Article  Google Scholar 

  17. Han Z, Xu Z, Wang J (2018) Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole. Int J Heat Mass Transf 126:993–1001

    Article  Google Scholar 

  18. Zeeshan M, Nath S, Bhanja D (2017) Numerical study to predict optimal configuration of fin and tube compact heat exchanger with various tube shapes and spatial arrangements. Energy Convers Manag 148:737–752

    Article  Google Scholar 

  19. Deepakkumar R, Jayavel S (2017) Air side performance of finned-tube heat exchanger with combination of circular and elliptical tubes. Appl Therm Eng 119:360–372

    Article  Google Scholar 

  20. Yoo SY, Park DS, Chung MH (2002) Heat transfer enhancement for fin-tube heat exchanger using vortex generators. KSME International Journal 16:109–115

    Article  Google Scholar 

  21. Chu P, He YL, Lei YG, Tian LT, Li R (2009) Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators. App. Therm. Eng. 29:859–876

    Article  Google Scholar 

  22. Delač B, Trp A, Lenić K (2014) Numerical investigation of heat transfer enhancement in a fin and tube heat exchanger using vortex generators. Int J Heat Mass Transf 78:662–669

    Article  Google Scholar 

  23. Du X, Feng L, Li L, Yang L, Yang Y (2014) Heat transfer enhancement of wavy finned flat tube by punched longitudinal vortex generators. Int J Heat Mass Transf 75:368–380

    Article  Google Scholar 

  24. Li L, Du X, Zhang Y, Yang L, Yang Y (2015) Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators. Int J Therm Sci 92:85–96

    Article  Google Scholar 

  25. Sun L, Zhang CL (2014) Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology. Int J Therm Sci 75:45–53

    Article  Google Scholar 

  26. Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, Transactions of the ASME 130(7):0780011–0780014

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the CFD laboratory, Mechanical Engineering Department (N.I.T. Silchar, Assam-788010), for providing the computational facility in carrying out the present numerical investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Zeeshan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeeshan, M., Nath, S. & Bhanja, D. Numerical analysis to predict the optimum configuration of fin and tube heat exchanger with rectangular vortex generators for enhanced thermohydraulic performance. Heat Mass Transfer 56, 2159–2169 (2020). https://doi.org/10.1007/s00231-020-02843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02843-8

Keywords

Navigation