Skip to main content
Log in

The Influence of Porous Structure on the Interdiffusion Kinetics of Cu-Ni System During Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The interdiffusion kinetics of Cu-Ni system and the influence of porous structure on atomic diffusion kinetics during spark plasma sintering (SPS) were investigated. The interdiffusion coefficient of the Cu-Ni system annealed under SPS is much higher than that without current when the temperature exceeds 700 °C. By comparing the interdiffusion behaviors between Ni powder/Cu foil interface and Ni foil/Cu foil interface, the interdiffusion rate at the foil/powder interface was found to be significantly higher than that at the foil/foil interface during SPS. The diffusion process at the Ni powder/Cu foil interface shows two clearly identified stages: a high diffusion rate at the initial stage with high porosity and a slower diffusion rate at the mid-late stage with low porosity. The diffusion coefficient at the initial stage is nearly 5.2 times higher than that of the mid-late stage, demonstrating that the diffusion rate at the foil/powder interface decreases with the gradual reduction of porosity during the SPS densification process. The porous structure leads to an extremely high local current density at the neck area, which results in a high density of crystal defects at the diffusion interface and subsequently accelerates atomic diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Li, T. Yuan, X. Liu, and K. Zhou: Scripta Mater., 2016, vol. 110, pp. 105–108.

    Article  Google Scholar 

  2. S. Deng, R. Li, T. Yuan, S. Xie, M. Zhang, K. Zhou, and P. Cao: Scripta Mater., 2018, vol. 143, pp. 25–29.

    Article  CAS  Google Scholar 

  3. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: J. Mater. Sci. 2006, vol. 41, pp. 763–777.

    Article  CAS  Google Scholar 

  4. J.E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar, and Z.A. Munir: Appl. Phys. Lett., 2004, vol. 85, pp. 573–575.

    Article  CAS  Google Scholar 

  5. P. Asoka-Kumar, K. O'brien, K.G. Lynn, P.J. Simpson, and K.P. Rodbell: Appl. Phys. Lett., 1996, vol. 68, pp. 406–408.

    Article  CAS  Google Scholar 

  6. T. Kondo, M. Yasuhara, T. Kuramoto, Y. Kodera, M. Ohyanagi, and Z. A. Munir: J. Mater. Sci., 2008, vol. 43, pp. 6400-6405

    Article  CAS  Google Scholar 

  7. L.F. Hu, F.M. Wang, S.P. Chen, and Q.S. Meng: Adv. Mater. Res., 2011, vol. 418-420, pp. 1423-1427

    Article  Google Scholar 

  8. J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z.A. Munir: Acta Mater., 2007, vol. 55, pp. 5592-5600.

    Article  CAS  Google Scholar 

  9. J. Zhao, J.E. Garay, U. Anselmi-Tamburini, snd Z.A. Munir: J. App. Phys., 2007, vol. 102, pp. 114902-114902-7.

  10. S. Deng, T. Yuan, R. Li, M. Zhang, S. Xie, M. Wang, L. Li, J. Yuan, and Q. Weng: Int. J. Refract. Met. Hard Mater., 2018, vol. 75, pp. 184–190.

    Article  CAS  Google Scholar 

  11. C. Chen and S. Chen: J. Electron. Mater., 1999, vol. 28, pp. 902–6.

    Article  CAS  Google Scholar 

  12. S.W. Chen, C.M. Chen, and W.C. Liu: J. Electron. Mater., 1998, vol. 27, pp. 1193–1199. .

    Article  CAS  Google Scholar 

  13. Z. Trzaska and J.P. Monchoux: J. Alloys Compd., 2015, vol. 635, pp. 142–149. .

    Article  CAS  Google Scholar 

  14. S. Rudinsky, R. Gauvin, and M. Brochu: J. Appl. Phys., 2014, vol. 116, pp. 402-196.

    Article  Google Scholar 

  15. A.T. English and E. Kinsbron: J. Appl. Phys., 1983, vol. 54, pp. 275–280.

    Article  CAS  Google Scholar 

  16. C. Collard, Z. Trzaska, L. Durand, J.M. Chaix, and J.P. Monchoux: Powder Technol., 2017, vol. 321, pp. 458–470.

    Article  CAS  Google Scholar 

  17. M. Ishikawa, H. Enomoto, N. Mikamoto, T. Nakamura, M. Matsuoka, and C. Iwakura: Surf. Coatings Technol., 1998, vol. 110, pp. 121–7.

    Article  CAS  Google Scholar 

  18. Q. Luo, Z. Wu, Z. Qin, L. Liu, and W. Hu: Surf. Coatings Technol., 2017, vol. 309, pp. 106-113.

    Article  CAS  Google Scholar 

  19. D.J. Chakrabarti, D.E. Laughlin, and S.W. Chen: Phase Diagrams of Binary Copper Alloys, ASM International, Materials Park, OH, 1994, pp. 276–286.

  20. Z. Balogh and G. Schmitz: Phys. Metall.***, 2014, vol. 2014, pp. 387–559.

  21. S.M. Schwarz, B.W. Kempshall, and L.A. Giannuzzi: Acta Mater., 2003, vol. 51, pp. 2765–2776. .

    Article  CAS  Google Scholar 

  22. P.S. Ho, and T. Kwok: Rep. Prog. Phys. 1999, vol. 52, pp. 301–348.

    Article  Google Scholar 

  23. M. Braunović and N. Alexandrov: IEEE Trans. Components Packag. Manuf. Technol. Part A, 1994, vol. 17, pp. 78-85.

    Article  Google Scholar 

  24. Z. Wang, L. Fang, I. Cotton, and R. Freer: Mater. Sci. Eng. B., 2015, vol. 198. pp. 86–94..

    Article  CAS  Google Scholar 

  25. G.Q. Chen, X. Ren, W.L. Zhou, and J.S. Zhang: Trans. Nonferrous Met. Soc. China., 2013, vol. 23, pp. 2460–4.

    Article  Google Scholar 

  26. U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir: Mater. Sci. Eng. A, 2005, vol. 407, pp. 24–30.

    Article  Google Scholar 

  27. X. Song, X. Liu, and J. Zhang: J. Am. Ceram.Soc., 2006, vol. 89, pp. 494-500.

    Article  CAS  Google Scholar 

  28. H. Jiang, J. He, and J. Zhao: Sci. Rep., 2015, vol. 5, pp. 12680.

    Article  Google Scholar 

  29. H. Jiang, J. Zhao, C. Wang, X. Liu, Mater. Lett. 2014, vol. 132, pp. 66–69.

    Article  CAS  Google Scholar 

  30. Y. Yang, Q. Zhou, Z. Hu, Mater. Sci. Forum. 2005, vol. 488-489, pp. 201–204.

    Article  Google Scholar 

  31. G.Q. Teng, Y.S. Chao, Z.H. Lai, and L. Dong: J. Mater. Sci. Lett., 1995, vol. 14, pp. 144–45.

  32. G. Teng, Y. Chad, L. Dong, Y. Geng, and Z. Lai: Japanese J. Appl. Phys., 1996, vol. 35, pp. 5320-5325.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of National Natural Science Foundation of China (51874369) and Hunan Natural Science Foundation (2018JJ3659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghua Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 25, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Niu, P., Deng, S. et al. The Influence of Porous Structure on the Interdiffusion Kinetics of Cu-Ni System During Spark Plasma Sintering. Metall Mater Trans A 51, 1799–1807 (2020). https://doi.org/10.1007/s11661-020-05635-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05635-1

Navigation