Skip to main content
Log in

Inorganic Molecular Complexes: Potential for Growth of a New Subject Area in Self-Assembly

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The non-covalent assemblies among multiple non-identical metal complexes have scopes to develop a new subject area. There are infinite numbers of ways for different combinations among inorganic neutral or ionic complexes. Each partnering species of those molecular complexes would also have diversities by changing metal ions, ligands, oxidation states of metal ions, and coordination numbers. Keeping a view of the emergence of framework materials and self-assembled nano-structures of metal complexes, the non-covalently linked assemblies of inorganic molecular complexes would have scopes for new nano-dimensional materials. This account provides a systematic description of the different inorganic molecular complexes for a concerted effort to develop a new area that would have importance in applied materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Noveron JC, Lah MS, DelSesto RE, Arif AM, Miller JS, Stang PJ (2002) Engineering the structure and magnetic properties of crystalline solids via the metal-directed self-assembly of a versatile molecular building unit. J Am Chem Soc 124:6613–6625

    CAS  PubMed  Google Scholar 

  2. Adolf CRR, Ferlay S, Kyritsakas N, Hosseini MW (2015) Welding molecular crystals. J Am Chem Soc 137:15390–15393

    CAS  PubMed  Google Scholar 

  3. Oh M, Mirkin CA (2005) Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438:651–654

    CAS  PubMed  Google Scholar 

  4. Li JW, Yu Q, He YH, Stoumpos CC, Niu GD, Trimarchi GG, Guo H, Dong GF, Wang D, Wang LD, Kanatzidis MG (2018) Cs2PbI2Cl2, all-inorganic two-dimensional Ruddlesden–Popper mixed halide perovskite with optoelectronic response. J Am Chem Soc 140:11085–11090

    CAS  PubMed  Google Scholar 

  5. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11:919–926

    CAS  PubMed  Google Scholar 

  6. Akiyama Y, Shikagawa H, Kanayama N, Takarada T, Maeda M (2015) Modulation of interparticle distance in discrete gold nanoparticle dimers and trimers by DNA single-base pairing. Small 11:3153–3161

    CAS  PubMed  Google Scholar 

  7. Chen PC, Liu M, Du JS, Meckes B, Wang S, Lin H, Dravid VP, Wolverton C, Mirkin CA (2019) Interface and heterostructure design in polyelemental nanoparticles. Science 363:959–964

    CAS  PubMed  Google Scholar 

  8. Sato O (2016) Dynamic molecular crystals with switchable physical properties. Nat Chem 8:644–656

    CAS  PubMed  Google Scholar 

  9. Lennartson A (2010) Co-crystallizing coordination compounds. J Coord Chem 63:4177–4187

    CAS  Google Scholar 

  10. Lehn JM (1994) Supramolecular reactivity and catalysis. Appl Catal A Gen 113:105–114

    CAS  Google Scholar 

  11. Baruah JB (2019) Principles and advances in supramolecular catalysis. CRC Press, New York

    Google Scholar 

  12. Leenders SHAM, Gramage-Doria R, deBruin B, Reek JNH (2015) Transition metal catalysis in confined spaces. Chem Soc Rev 44:433–448

    CAS  PubMed  Google Scholar 

  13. Koh K, Wong-Foy AG, Matzger AJ (2009) MOF@MOF: microporous core–shell architectures. Chem Commun 41:6162–6164

    Google Scholar 

  14. Huang G, Zhang L, Zhangac F, Wang L (2014) Metal–organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6:5509–5515

    CAS  PubMed  Google Scholar 

  15. MacDonald JC, Dorrestein PC, Pilley MM, Foote MM, Lundburg JL, Henning RW, Schultz AJ, Manson JL (2000) Design of layered crystalline materials using coordination chemistry and hydrogen bonds. J Am Chem Soc 122:11692–11702

    CAS  Google Scholar 

  16. Abrahams CT, Abrahams BF, Hudson TA, Robson R (2016) Templation of a square grid copper (II) 4,4′-bipyridine network by a 3D PtS-related Cu(I)–Cu(II) 4,4′-bipyridine crystal. Chem Commun 52:609–612

    CAS  Google Scholar 

  17. Yu F, Kurmoo M, Zhuang G-L (2018) Zuo J-L Hierarchical tandem assembly of planar [3 × 3] building units into 3 × [3 × 3] oligomers: mixed valency, electrical conductivity and magnetism. Chem Sci 9:7498–7504

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuehl CJ, Tabellion FM, Arif AM, Stang PJ (2001) Single- and double-stranded chains assembled via concomitant metal coordination and hydrogen bonding. Organometallics 20:1956–1959

    CAS  Google Scholar 

  19. Schultz A, Li X, Barkakaty B, Moorefield CN, Wesdemiotis C, Newkome GR (2012) Stoichiometric self-assembly of isomeric, shape-persistent, supramacromolecular bowtie and butterfly structures. J Am Chem Soc 134:7672–7675

    CAS  PubMed  Google Scholar 

  20. Jiang Z, Li Y, Wang M, Liu D, Yuan J, Chen M, Wang J, Newkome GR, Sun W, Li X, Wang P (2017) Constructing high-generation Sierpinski triangles by molecular puzzling. Angew Chem Int Ed 56:11450–11455

    CAS  Google Scholar 

  21. Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) Control over catenation in metal–organic frameworks via rational design of the organic building block. J Am Chem Soc 132:950–952

    CAS  PubMed  Google Scholar 

  22. Colomban C, Martin-Diaconescu V, Parella T, Goeb S, García-Simón C, Lloret-Fillol J, Costas M, Ribas X (2018) Design of Zn, Cu, and Fe-coordination complexes confined in a self-assembled nanocage. Inorg Chem 57:3529–3539

    CAS  PubMed  Google Scholar 

  23. Jana A, Koner R, Nayak M, Lemoine P, Dutta S, Ghosh M, Mohanta S (2011) Syntheses, crystal structures and magnetic properties of trinuclear and [3 × 1+1 × 2] pentanuclear complexes derived from a compartmental ligand: role of solvent on nuclearity and number of components. Inorg Chim Acta 365:71–77

    CAS  Google Scholar 

  24. Bhattacharya S, Mondal S, Sasmal S, Sparkes HA, Howard JAK, Nayak M, Mohanta S (2011) Bis(nitrate)diaquauranylvi synthon to generate [1 × 2 + 1 × 1] and [1 × 1 + 1 × 1] co-crystalized 3d···5f self-assemblies. CrystEngComm 13:1029–1036

    CAS  Google Scholar 

  25. Nayak M, Sarkar S, Hazra S, Sparkes HA, Howard JAK, Mohanta S (2011) Syntheses and crystal structures of dinuclear, trinuclear [2 × 1 + 1 × 1] and tetranuclear [2 × 1 + 1 × 2] copperII-d10 complexes (d10 ⇒ ZnII, CdII, HgII and AgI) derived from N, N′-ethylenebis(3-ethoxysalicylaldimine). CrystEngComm 13:124–132

    CAS  Google Scholar 

  26. Nayak M, Hazra S, Lemoine P, Koner R, Lucas CR, Mohanta S (2008) Self-assembled [2 × 1+1 × 2] heterotetranuclear CuII/MnII/CuII3CoII and [2 × 2+1 × 3] heptanuclear CuII compounds derived from N, N′-o-phenylenebis(3-ethoxysalicylaldimine): structures and magnetic properties. Polyhedron 27:1201–1213

    CAS  Google Scholar 

  27. Sarma R, Perumal A, Baruah JB (2009) Some aspects of N-oxide bridged manganese (II) co-ordination polymers. J Coord Chem 62:1513–1524

    CAS  Google Scholar 

  28. Baruah AM, Karmakar A, Baruah JB (2008) Steric effects in controlling co-ordination environment in zinc 2-nitrobenzoate complexes. Inorg Chim Acta 361:2777–2784

    CAS  Google Scholar 

  29. Dehghanpour S, Mahmoudi A, Najafi L, Khalafbeigi M, Jahani K (2013) [MII(3-(2′-pyridylmethyleneamino)pyridine)(NO3)2], (M = Co, Zn, Cd) coordination polymers; single, mixed and composite crystals. Polyhedron 53:91–97

    CAS  Google Scholar 

  30. Baruah JB (2018) Predominantly ligand guided non-covalently linked assemblies of inorganic complexes and guest inclusion. J Chem Sci 130:56

    Google Scholar 

  31. Sarma R, Karmakar A, Baruah JB (2008) N-oxides in metal containing multi components molecular complexes. Inorg Chem 47:763–765

    CAS  PubMed  Google Scholar 

  32. Jones P, Vagg RS, Williams PA (1984) Cocrystallization of four diastereoisomers: a second example. Inorg Chem 23:4110–4113

    CAS  Google Scholar 

  33. Nastase S, Tuna F, Maxim C, Muryn CA, Avarvari N, Winpenny REP, Andruh M (2007) Supramolecular dimers and chains resulting from second coordination sphere interactions. Cryst Growth Des 7:1825–1831

    CAS  Google Scholar 

  34. Jana A, Mohanta S (2014) A tale of crystal engineering of metal complexes derived from a special ligand family having a cosmopolitan compartment. CrystEngComm 16:5494–5551

    CAS  Google Scholar 

  35. Miskowski VM, Houlding VH (1991) Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands solid-state effects. Metal-metal interaction in double salts and linear chains. Inorg Chem 30:4446–4452

    CAS  Google Scholar 

  36. Hayoun R, Zhong DK, Rheingold AL, Doerrer LH (2006) Gold(III) and platinum(II) polypyridyl double salts and a general metathesis route to metallophilic interactions. Inorg Chem 45:6120–6122

    CAS  PubMed  Google Scholar 

  37. Braga D, Grepioni F, Shemchuk O (2018) Organic–inorganic ionic co-crystals: a new class of multipurpose compounds. CrystEngComm 20:2212–2220

    CAS  Google Scholar 

  38. Wang JF, Fang WH, Li DS, Zhang L, Zhang J (2017) Cocrystal of Ti4 and Ti6 clusters with enhanced photochemical properties. Inorg Chem 56:2367–2370

    CAS  PubMed  Google Scholar 

  39. Zaiats G, Kinge S, Kamat PV (2016) Origin of dual photoluminescence states in ZnS–CuInS2 alloy nanostructures. J Phys Chem C 120:10641–10646

    CAS  Google Scholar 

  40. Evans WJ, Boyle TJ, Ziller JW (1992) Structural diversity in bis(pentamethylcyclo pentadienyl) yttrium chloride complexes: cocrystallization of [(C5Me5)2Y(μ-Cl)2Li(THF)2] and [(C5Me5)2YCl(μ-Cl)Li(THF)3]. Inorg Chem 31:1120–1122

    CAS  Google Scholar 

  41. Deka K, Laskar M, Baruah JB (2006) Carbon–nitrogen bond cleavage by copper complexes. Polyhedron 25:2525–2529

    CAS  Google Scholar 

  42. Phukan N, Baruah JB (2013) A supramolecular assembly and complexes of zinc 2-hydoxy-3-naphthoate. RSC Adv 3:1151–1157

    CAS  Google Scholar 

  43. Khakhlary P, Baruah JB (2015) Studies on cluster, salt and molecular complex of zinc quinolinate. J Chem Sci 127:215–223

    CAS  Google Scholar 

  44. Bréfuel N, Duhayon C, Shova S, Tuchagues J-P (2007) An unprecedented co-crystal including a cis-high-spin and a trans-low-spin FeII complex molecule. Chem Commun 48:5223–5225

    Google Scholar 

  45. Kitchen JA, Jameson GNL, Tallon JL, Brooker S (2010) Spin crossover in co-crystallised 2:1 cis:trans [FeII(pldpt)2(NCS)2] occurs only in 1/3 of the iron centres. Chem Commun 46:3200–3202

    CAS  Google Scholar 

  46. Lennartson A, Kansson MH, Jagner S (2007) Cis- and trans bis(benzoylacetonato)pyridine copper(II): co-crystallization of square pyramidal cis- and trans-pyridine-bis(benzoylacetonato)-copper(II). N J Chem 31:344–347

    CAS  Google Scholar 

  47. Li K, Liu Y, Yan C, Fu L, Wei SC, Wang H-P, Pan M, Su CY (2012) Cocrystallization of coordinative and inorganic lanthanide centers showing dual emission via linked or unlinked antenna. CrystEngComm 14:3868–3874

    CAS  Google Scholar 

  48. Bhattacharya D (2015) A two component cocrystal of Cu(II) complex of para-toluene terpyridine. Indian J Chem 54A:35–39

    CAS  Google Scholar 

  49. Hadadzadeh H, Mansouri G, Rezvani AR, Khavasi HR (2012) A Novel 1:1 Co-Crystal of bis(1,10-phenanthroline)(1,10-phenanthroline-5,6-dione)nickel(II) hexafluoro-phosphate and tris(1,10-phenanthroline)nickel(II) hexafluorophosphate complexes, [Ni(phen)2(phen-dione)][Ni(phen)3] (PF6)4. J Chem Crystallogr 42:486–493

    CAS  Google Scholar 

  50. Dey B, Sahab R, Mukherjee P (2013) A luminescent-water soluble inorganic co-crystal for a selective pico-molar range arsenic(III) sensor in water medium. Chem Commun 49:7064–7066

    CAS  Google Scholar 

  51. Singh WM, Jali BR, Baruah JB (2012) Iron(II) and manganese(II) complexes of 2-{2-(3-carboxypyridin-2-yl)disulfanyl}pyridine-3-carboxylic acid through C–S bond cleavage. J Chem Crystallogr 42:775–782

    Google Scholar 

  52. Nath J, Tarai A, Baruah JB (2019) Copper(II), zinc(II), and cadmium(II) formylbenzoate complexes: reactivity and emission properties. ACS Omega 4:18444–18455

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chandrasekhar V, Azhakar R, Pandian BM, Boomishankar R, Steiner A (2008) A phosphorus-supported multisite coordination ligand containing three imidazolyl arms and its metalation behaviour An unprecedented co-existence of mononuclear and macrocyclic dinuclear Zn(II) complexes in the same unit cell of a crystalline lattice. Dalton Trans 43:5962–5969

    Google Scholar 

  54. Liao CY, Nayak M, Wei HH, Mohanta S (2008) Synthesis, crystal engineering, and magnetic properties of an anionic 4-terpyridone based copper(II) azide supramolecule containing dinuclear–mononuclear cocrystal. Polyhedron 27:2693–2697

    CAS  Google Scholar 

  55. Shankar K, Baruah JB (2016) Tetranuclear cobalt complexes as nano-dimensional template for inclusion of nitro-phenols. ChemistrySelect 1:5152–5158

    CAS  Google Scholar 

  56. Chou CC, Su CC, Yeh A (2005) Mononuclear and dinuclear copper(I) complexes of bis(3,5-dimethylpyrazol-1-yl)methane: synthesis, structure, and reactivity. Inorg Chem 44:6122–6128

    CAS  PubMed  Google Scholar 

  57. Chou CC, Su CC, Tsai HL, Lii KH (2005) First example of a 2:1 cocrystal of mixed Cu(I)/Cu(II) complexes and a novel ferromagnetic bis(μ-hydroxo)dicopper(II) complex with a bis(pyrazol-1-yl)methane bidentate ligand. Inorg Chem 44:628–632

    CAS  PubMed  Google Scholar 

  58. Ishiwata T, Michibata A, Kokado K, Ferlay S, Hosseini MW, Sada K (2018) Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking. Chem Commun 54:1437–1440

    CAS  Google Scholar 

  59. Zhang F, Adolf CRR, Zigon N, Ferlay S, Kyritsakas N, Hosseini MW (2017) Molecular tectonics: hierarchical organization of heterobimetallic coordination networks into heterotrimetallic core–shell crystals. Chem Commun 53:3587–3590

    CAS  Google Scholar 

  60. Balogh CM, Veyre L, Pilet G, Charles C, Viriot L, Andraud C, Thieuleux C, Riobe F, Maury O (2017) Two-color three-state luminescent lanthanide core–shell crystals. Chem Eur J 23:1784–1788

    CAS  PubMed  Google Scholar 

  61. Ma Z, Han S, Ch Kravtsov V, Moulton B (2010) Conformational isomerism and hydrogen-bonded motifs of anion assisted supramolecular self-assemblies using CuII/CoII salts and pyridine-4-acetamide. Inorg Chim Acta 363:387–394

    CAS  Google Scholar 

  62. Singh D, Baruah JB (2013) Hydroxycarboxylates of manganese, zinc and cadmium. Inorg Chim Acta 394:703–709

    CAS  Google Scholar 

  63. Chandrasekhar V, Singh P (2009) A pentahydrated diorganotin cation. Cocrystallization of [{n-Bu2Sn(H2O)5}][CF3SO3]2 and [{n-Bu2Sn(BPDO-II)2(H2O)2}][CF3SO3]2. Organometallics 28:4974–4978

    CAS  Google Scholar 

  64. Cai SL, Zheng SR, Tan JB, Pan M, Fan J, Zhang WG (2011) An unprecedented supramolecular network with channels filled by 1D coordination polymer chains: cocrystallization of Ag(I)-4,4′-bipyridine and Ag(I)-benzimidazole complexes. CrystEngComm 13:6345–6348

    CAS  Google Scholar 

  65. Klongdee F, Boonmak J, Moubaraki B, Murray KS, Youngme S (2017) Copper(II) coordination polymers containing neutral trinuclear or anionic dinuclear building units based on pyrazole-3,5-dicarboxylate: synthesis, structures and magnetic properties. Polyhedron 126:8–16

    CAS  Google Scholar 

  66. Barooah N, Karmakar A, Sarma RJ, Baruah JB (2006) Self-assembly through hydrogen-bonding and C–H π interactions in metal complexes of N-functionalised glycine. Inorg Chem Commun 9:1251–1254

    CAS  Google Scholar 

  67. Moghimi A, Ranjbar M, Aghabozorg H, Jalali F, Shamsipur M, Chadha KK (2002) Synthesis, characterization, and X-ray crystal structures of Co(II) and La(III) complexes of a pyridine containing self-assembling system and solution studies of the Co(II) complex. Can J Chem 80:1687–1696

    CAS  Google Scholar 

  68. Sarkar S, Nayak M, Fleck M, Dutta S, Florke U, Koner R, Mohanta S (2010) Syntheses, crystal structures and mass spectrometry of mononuclear NiII inclusion product and self-assembled [2 × 1+1 × 2] NiII3MII (M = Cu, Ni Co, Fe or Mn) cocrystals derived from N, N′-ethylenebis(3-ethoxysalicylaldimine). Eur J Inorg Chem 2010:735–743. https://doi.org/10.1002/ejic.200900685

    Article  CAS  Google Scholar 

  69. Carlucci L, Ciani G, Proserpio DM (1998) Three-dimensional architectures of intertwined planar coordination polymers: the first case of interpenetration involving two different bidimensional polymeric motifs. N J Chem 22:1319–1321

    CAS  Google Scholar 

  70. Gembicky M, Moncol J, Lebruskova K, Martiska L, Valigura D (2008) Copper(II) 3,5-dinitrosalicylate—the unique System for cocrystal formation by gentle changes in preparation procedure. Acta Chim Slovaca 1:290–300

    Google Scholar 

  71. Nayak M, Jana A, Fleck M, Hazra S, Mohanta S (2010) A unique example of a three component cocrystal of metal complexes. CrystEngComm 12:1416–1421

    CAS  Google Scholar 

  72. Reger DL, Debreczeni A, Reinecke B, Rassolov V, Smith MD, Semeniuc RF (2009) Highly organized structures and unusual magnetic properties of paddlewheel copper(II) carboxylate dimers containing the π–π stacking, 1,8-naphthalimide synthon. Inorg Chem 48:8911–8924

    CAS  PubMed  Google Scholar 

  73. Sarma R, Karmakar A, Baruah JB (2008) Synthesis and characterization of pyridine N-oxide complexes of manganese, copper and zinc. Inorg Chim Acta 361:2081–2086

    CAS  Google Scholar 

  74. Singh D, Baruah JB (2012) Molecular-complex from two different binuclear copper 1,4,5,8-naphthalene tetracarboxylate complexes. Inorg Chim Acta 390:37–40

    CAS  Google Scholar 

  75. Karmakar A, Sarma RJ, Baruah JB (2006) Self-assembly of neutral dinuclear and trinuclear zinc-benzoate complexes. Inorg Chem Commun 9:1169–1172

    CAS  Google Scholar 

  76. Mukherjee P, Drew MGB, Gomez-Garcia CJ, Ghosh A (2009) (Ni2), (Ni3), and (Ni2 + Ni3): a unique example of isolated and cocrystallized Ni2 and Ni3 complexes. Inorg Chem 48:4817–4827

    CAS  PubMed  Google Scholar 

  77. Hazra S, Chakraborty P, Mohanta S (2016) Heterometallic copper(II)–tin(II/IV) salts, cocrystals, and salt cocrystals: selectivity and structural diversity depending on ligand substitution and the metal oxidation state. Cryst Growth Des 16:3777–3790

    CAS  Google Scholar 

  78. Das LK, Biswas A, Gomez-García CJ, Drew MGB, Ghosh A (2014) Isolation of two different Ni2Zn complexes with an unprecedented molecular-complex formed by one of them and a coordination positional isomer of the other. Inorg Chem 53:434–445

    CAS  PubMed  Google Scholar 

  79. Nayak M, Koner R, Lin HH, Florke U, Wei HH, Mohanta S (2006) Syntheses, structures, and magnetic properties of mononuclear CuII and tetranuclear CuII3MII (M = Cu Co, or Mn) compounds derived from N, N′-ethylenebis(3-ethoxysalicylaldimine): cocrystallization due to potential encapsulation of water. Inorg Chem 45:10764–10773

    CAS  PubMed  Google Scholar 

  80. Shukla P, Metre RK, Du MH, Kong XJ, Das S (2019) [5 × 1 + 1 × 1] Hexanuclear lanthanide(III) cocrystal complexes: syntheses, structures, and magnetic properties. Eur J Inorg Chem 16:2216–2223

    Google Scholar 

  81. Caudle MT, Benedict JB, Mobley CK, Straessler NA, Groy TL (2002) Metal ion scrambling in hexanuclear M6(Et2NCO2)12 complexes (M = Co, Mg). Synthesis, solid state structure, and solution dynamics of heteronuclear ConMg6-n(Et2NCO2)12 complexes. Inorg Chem 41:3183–3190

    CAS  PubMed  Google Scholar 

  82. Bellini R, Chikkali SH, Berthon-Gelloz G, Reek JNH (2011) Supramolecular control of ligand coordination and implications in hydroformylation reactions. Angew Chem Int Ed 50:7342–7345

    CAS  Google Scholar 

  83. Gadzikwa T, Bellini R, Dekker HL, Reek JNH (2012) Self-assembly of a confined rhodium catalyst for asymmetric hydroformylation of unfunctionalized internal alkenes. J Am Chem Soc 134:2860–2863

    CAS  PubMed  Google Scholar 

  84. Shankar K, Baruah JB (2016) Mixed anionic and inclusion complexes of nickel(II) with nitroaromatics showing selectivity in oxygen–π interactions. Inorg Chim Acta 453:135–141

    CAS  Google Scholar 

  85. Brennan MC, Draguta S, Kamat PV, Kuno M (2018) Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett 3:204–213

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jubaraj B. Baruah.

Ethics declarations

Conflict of interest

The author has no conflicts of interest with any known source.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, J.B. Inorganic Molecular Complexes: Potential for Growth of a New Subject Area in Self-Assembly. Top Curr Chem (Z) 378, 30 (2020). https://doi.org/10.1007/s41061-020-0294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-0294-8

Keywords

Navigation