Skip to main content

Advertisement

Log in

The origin of galactic cosmic rays

  • REVIEW ARTICLE
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data.

I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy.

In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of research has recently experienced a remarkable growth, in that lines have been found to bear information on the cosmic-ray acceleration efficiency of supernova shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Presentation by S. Ting at the 33rd International Cosmic Ray Conference, Rio De Janeiro, July 2013.

  2. This does not need to be so: for instance in the case of the non-resonant instability discussed by Caprioli et al. 2010a, magnetic field amplification may be effective, and yet the modes are almost purely growing, namely with very low phase velocity.

References

  • Abbasi R, Abdou Y, Ackermann M, Adams J, Aguilar JA, Ahlers M, Altmann D, Andeen K, Auffenberg J, Bai X, Baker M, Barwick SW, Baum V, Bay R, Beattie K, Beatty JJ, Bechet S, Becker JK, Becker KH, Bell M, Benabderrahmane ML, Benzvi S, Berdermann J, Berghaus P, Berley D, Bernardini E, Bertrand D, Besson DZ, Bindig D, Bissok M, Blaufuss E, Blumenthal J, Boersma DJ, Bohm C, Bose D, Böser S, Botner O, Brayeur L, Brown AM, Bruijn R, Brunner J, Buitink S, Caballero-Mora KS, Carson M, Casey J, Casier M, Chirkin D, Christy B, Clevermann F, Cohen S, Cowen DF, Silva AHC, Danninger M, Daughhetee J, Davis JC, Clercq CD, Descamps F, Desiati P, de Vries-Uiterweerd G, Deyoung T, Díaz-Vélez JC, Dreyer J, Dumm JP, Dunkman M, Eagan R, Eisch J, Ellsworth RW, Engdegård O, Euler S, Evenson PA, Fadiran O, Fazely AR, Fedynitch A, Feintzeig J, Feusels T, Filimonov K, Finley C, Fischer-Wasels T, Flis S, Franckowiak A, Franke R, Frantzen K, Fuchs T, Gaisser TK, Gallagher J, Gerhardt L, Gladstone L, Glüsenkamp T, Goldschmidt A, Goodman JA, Góra D, Grant D, GroßA, Grullon S, Gurtner M, Ha C, Ismail AH, Hallgren A, Halzen F, Hanson K, Heereman D, Heimann P, Heinen D, Helbing K, Hellauer R, Hickford S, Hill GC, Hoffman KD, Hoffmann R, Homeier A, Hoshina K, Huelsnitz W, Hulth PO, Hultqvist K, Hussain S, Ishihara A, Jacobi E, Jacobsen J, Japaridze GS, Jlelati O, Johansson H, Kappes A, Karg T, Karle A, Kiryluk J, Kislat F, Kläs J, Klein SR, Köhne JH, Kohnen G, Kolanoski H, Köpke L, Kopper C, Kopper S, Koskinen DJ, Kowalski M, Krasberg M, Kroll G, Kunnen J, Kurahashi N, Kuwabara T, Labare M, Laihem K, Landsman H, Larson MJ, Lauer R, Lesiak-Bzdak M, Lünemann J, Madsen J, Maruyama R, Mase K, Matis HS, Mcnally F, Meagher K, Merck M, Mészáros P, Meures T, Miarecki S, Middell E, Milke N, Miller J, Mohrmann L, Montaruli T, Morse R, Movit SM, Nahnhauer R, Naumann U, Nowicki SC, Nygren DR, Obertacke A, Odrowski S, Olivas A, Olivo M, O’Murchadha A, Panknin S, Paul L, Pepper JA, de los Heros CP, Pieloth D, Pirk N, Posselt J, Price PB, Przybylski GT, Rädel L, Rawlins K, Redl P, Resconi E, Rhode W, Ribordy M, Richman M, Riedel B, Rodrigues JP, Rothmaier F, Rott C, Ruhe T, Rutledge D, Ruzybayev B, Ryckbosch D, Salameh T, Sander HG, Santander M, Sarkar S, Saba SM, Schatto K, Scheel M, Scheriau F, Schmidt T, Schmitz M, Schoenen S, Schöneberg S, Schönherr L, Schönwald A, Schukraft A, Schulte L, Schulz O, Seckel D, Seo SH, Sestayo Y, Seunarine S, Smith MWE, Soiron M, Soldin D, Spiczak GM, Spiering C, Stamatikos M, Stanev T, Stasik A, Stezelberger T, Stokstad RG, Stößl A, Strahler EA, Ström R, Sullivan GW, Taavola H, Taboada I, Tamburro A, Ter-Antonyan S, Tilav S, Toale PA, Toscano S, Usner M, van Eijndhoven N, van der Drift D, Overloop AV, van Santen J, Vehring M, Voge M, Walck C, Waldenmaier T, Wallraff M, Walter M, Wasserman R, Weaver C, Wendt C, Westerhoff S, Whitehorn N, Wiebe K, Wiebusch CH, Williams DR, Wissing H, Wolf M, Wood TR, Woschnagg K, Xu C, Xu DL, Xu XW, Yanez JP, Yodh G, Yoshida S, Zarzhitsky P, Ziemann J, Zilles A, Zoll M (I Collaboration) (2013) Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of Icetop and Icecube. Astropart Phys 42:15. doi:10.1016/j.astropartphys.2012.11.003

    ADS  Google Scholar 

  • Abdo AA, Ackermann M, Ajello M, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Baughman BM, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bouvier A, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Cheung CC, Chiang J, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky LR, Conrad J, Cutini S, Dermer CD, de Angelis A, de Palma F, Digel SW, Dormody M, EdCe S, Drell PS, Dubois R, Dumora D, Farnier C, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Frailis M, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giavitto G, Giebels B, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Hanabata Y, Harding AK, Hayashida M, Hays E, Hughes RE, Jackson MS, Jóhannesson G, Johnson AS, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Katsuta J, Kawai N, Kerr M, Knödlseder J, Kocian ML, Kuss M, Lande J, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Makeev A, Mazziotta MN, McEnery JE, Meurer C, Michelson PF, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Nuss E, Ohsugi T, Okumura A, Omodei N, Orlando E, Ormes JF, Paneque D, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Ritz S, Rodriguez AY, Romani RW, Roth M, Ryde F, Sadrozinski HFW, Sanchez D, Sander A, Saz Parkinson PM, Scargle JD, Schalk TL, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Uchiyama Y, Usher TL, Vasileiou V, Venter C, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamazaki R, Ylinen T, Ziegler M (2009) Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys J 706:L1–L6. doi:10.1088/0004-637X/706/1/L1. arXiv:0910.0908

    ADS  Google Scholar 

  • Abdo AA, Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Bastieri D, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bouvier A, Brandt TJ, Bregeon J, Brigida M, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Carrigan S, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Chiang J, Ciprini S, Claus R, Cohen-Tanugi J, Conrad J, de Dermer CD, Palma F, EdCe S, Drell PS, Dubois R, Dumora D, Farnier C, Favuzzi C, Fegan SJ, Fukazawa Y, Fukui Y, Funk S, Fusco P, Gargano F, Gehrels N, Germani S, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grove JE, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hays E, Horan D, Hughes RE, Jóhannesson G, Johnson AS, Johnson WN, Kamae T, Katagiri H, Kataoka J, Knödlseder J, Kuss M, Lande J, Latronico L, Lee SH, Lemoine-Goumard M, Llena Garde M, Longo F, Loparco F, Lovellette MN, Lubrano P, Makeev A, Mazziotta MN, Michelson PF, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Nuss E, Ohno M, Ohsugi T, Omodei N, Orlando E, Ormes JF, Ozaki M, Panetta JH, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Rodriguez AY, Roth M, Sadrozinski HFW, Sander A, Saz Parkinson PM, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Uchiyama Y, Uehara T, Usher TL, Vasileiou V, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamamoto H, Yamazaki R, Yang Z, Ylinen T, Ziegler M (2010a) Fermi large area telescope observations of the supernova remnant W28 (G6.4-0.1). Astrophys J 718:348–356. doi:10.1088/0004-637X/718/1/348

    ADS  Google Scholar 

  • Abdo AA, Ackermann M, Ajello M, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Baughman BM, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Cheung CC, Chiang J, Ciprini S, Claus R, Cognard I, Cohen-Tanugi J, Cominsky LR, Conrad J, Cutini S, Dermer CD, de Angelis A, de Palma F, Digel SW, do Couto e Silva E, Drell PS, Dubois R, Dumora D, Espinoza C, Farnier C, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Frailis M, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giavitto G, Giebels B, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Hanabata Y, Harding AK, Hayashida M, Hays E, Hughes RE, Jackson MS, Jóhannesson G, Johnson AS, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Katsuta J, Kawai N, Kerr M, Knödlseder J, Kocian ML, Kramer M, Kuss M, Lande J, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Lyne AG, Madejski GM, Makeev A, Mazziotta MN, McEnery JE, Meurer C, Michelson PF, Mitthumsiri W, Mizuno T, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Noutsos A, Nuss E, Ohsugi T, Omodei N, Orlando E, Ormes JF, Paneque D, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Rochester LS, Rodriguez AY, Romani RW, Roth M, Ryde F, Sadrozinski HFW, Sanchez D, Sander A, Saz Parkinson PM, Scargle JD, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Stappers BW, Stecker FW, Strickman MS, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Theureau G, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Uchiyama Y, Usher TL, Vasileiou V, Venter C, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamazaki R, Ylinen T, Ziegler M (2010b) Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327:1103. doi:10.1126/science.1182787

    ADS  Google Scholar 

  • Abdo AA, Ackermann M, Ajello M, Baldini L, Ballet J, Barbiellini G, Bastieri D, Baughman BM, Bechtol K, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Chekhtman A, Cheung CC, Chiang J, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky LR, Conrad J, Cutini S, Dermer CD, de Angelis A, de Palma F, EdCe S, Drell PS, Drlica-Wagner A, Dubois R, Dumora D, Farnier C, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Frailis M, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giavitto G, Giebels B, Giglietto N, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Hanabata Y, Harding AK, Hayashida M, Hughes RE, Jackson MS, Jóhannesson G, Johnson AS, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Kawai N, Kerr M, Knödlseder J, Kocian ML, Kuss M, Lande J, Latronico L, Lee SH, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Madejski GM, Makeev A, Mazziotta MN, Meurer C, Michelson PF, Mitthumsiri W, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nolan PL, Norris JP, Nuss E, Ohsugi T, Orlando E, Ormes JF, Ozaki M, Paneque D, Panetta JH, Parent D, Pelassa V, Pepe M, Pesce-Rollins M, Piron F, Porter TA, Rainò S, Rando R, Razzano M, Reimer A, Reimer O, Reposeur T, Rochester LS, Rodriguez AY, Romani RW, Roth M, Ryde F, Sadrozinski HFW, Sanchez D, Sander A, Saz Parkinson PM, Scargle JD, Sgrò C, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Strong AW, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Torres DF, Tosti G, Tramacere A, Uchiyama Y, Usher TL, Van Etten A, Vasileiou V, Venter C, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Ylinen T, Ziegler M (2010c) Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys J 712:459–468. doi:10.1088/0004-637X/712/1/459. arXiv:1002.2198

    ADS  Google Scholar 

  • Abdo AA, Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bouvier A, Brandt TJ, Bregeon J, Brigida M, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Chaty S, Chekhtman A, Cheung CC, Chiang J, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Conrad J, Corbel S, Cutini S, de Angelis A, de Palma F, Dermer CD, Digel SW, Silva EC, Drell PS, Drlica-Wagner A, Dubois R, Dumora D, Favuzzi C, Ferrara EC, Fortin P, Frailis M, Fukazawa Y, Fukui Y, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Germani S, Giglietto N, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hayashida M, Hayashi K, Hays E, Horan D, Jackson MS, Jóhannesson G, Johnson AS, Kamae T, Katagiri H, Kataoka J, Kerr M, Knödlseder J, Kuss M, Lande J, Latronico L, Lee SH, Lemoine-Goumard M, Longo F, Loparco F, Lovellette MN, Lubrano P, Madejski GM, Makeev A, Mazziotta MN, McEnery JE, Michelson PF, Mignani RP, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Naumann-Godo M, Nolan PL, Norris JP, Nuss E, Ohsugi T, Okumura A, Orlando E, Ormes JF, Paneque D, Parent D, Pelassa V, Pesce-Rollins M, Pierbattista M, Piron F, Pohl M, Porter TA, Rainò S, Rando R, Razzano M, Reimer O, Reposeur T, Ritz S, Romani RW, Roth M, Sadrozinski HFW, Saz Parkinson PM, Sgrò C, Smith DA, Smith PD, Spandre G, Spinelli P, Strickman MS, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Troja E, Uchiyama Y, Vandenbroucke J, Vasileiou V, Vianello G, Vilchez N, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yamamoto H, Yamazaki R, Yang Z, Ziegler M (2011) Observations of the Young supernova remnant RX J1713.7-3946 with the Fermi large area telescope. Astrophys J 734:28. doi:10.1088/0004-637X/734/1/28. arXiv:1103.5727

    ADS  Google Scholar 

  • Abraham J, Abreu P, Aglietta M, Ahn EJ, Allard D, Allekotte I, Allen J, Alvarez-Muñiz J, Ambrosio M, Anchordoqui L et al. (2010) Measurement of the depth of maximum of extensive air showers above 1018 eV. Phys Rev Lett 104(9):091101. doi:10.1103/PhysRevLett.104.091101. arXiv:1002.0699

    ADS  Google Scholar 

  • Acciari VA, Aliu E, Arlen T, Aune T, Beilicke M, Benbow W, Bradbury SM, Buckley JH, Bugaev V, Byrum K, Cannon A, Cesarini A, Ciupik L, Collins-Hughes E, Cui W, Dickherber R, Duke C, Errando M, Finley JP, Finnegan G, Fortson L, Furniss A, Galante N, Gall D, Gillanders GH, Godambe S, Griffin S, Grube J, Guenette R, Gyuk G, Hanna D, Holder J, Hughes JP, Hui CM, Humensky TB, Kaaret P, Karlsson N, Kertzman M, Kieda D, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Madhavan AS, Maier G, Majumdar P, McArthur S, McCann A, Moriarty P, Mukherjee R, Ong RA, Orr M, Otte AN, Pandel D, Park NH, Perkins JS, Pohl M, Quinn J, Ragan K, Reyes LC, Reynolds PT, Roache E, Rose HJ, Saxon DB, Schroedter M, Sembroski GH, Senturk GD, Slane P, Smith AW, Tešić G, Theiling M, Thibadeau S, Tsurusaki K, Varlotta A, Vassiliev VV, Vincent S, Vivier M, Wakely SP, Ward JE, Weekes TC, Weinstein A, Weisgarber T, Williams DA, Wood M, Zitzer B (2011) Discovery of TeV gamma-ray emission from Tycho’s supernova remnant. Astrophys J 730:L20. doi:10.1088/2041-8205/730/2/L20. arXiv:1102.3871

    ADS  Google Scholar 

  • Acharya BS et al. (2013) Introducing the CTA concept. Astropart Phys 43(0):3–18. doi:10.1016/j.astropartphys.2013.01.007. http://www.sciencedirect.com/science/article/pii/S0927650513000169

    ADS  Google Scholar 

  • Achterberg A (1983) Modification of scattering waves and its importance for shock acceleration. Astron Astrophys 119:274

    ADS  MATH  Google Scholar 

  • Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Bastieri D, Belfiore A, Bellazzini R, Berenji B, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bottacini E, Brigida M, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Chekhtman A, Cheung CC, Chiang J, Ciprini S, Claus R, Cohen-Tanugi J, Angelis AD, Palma FD, Dermer CD, Silva EDCE, Drell PS, Dumora D, Favuzzi C, Fegan SJ, Focke WB, Fortin P, Fukazawa Y, Fusco P, Gargano F, Germani S, Giglietto N, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Guillemot L, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hayashida M, Hayashi K, Hays E, Jóhannesson G, Johnson AS, Kamae T, Katagiri H, Kataoka J, Kerr M, Knödlseder J, Kuss M, Lande J, Latronico L, Lee SH, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Martin P, Mazziotta MN, Mcenery JE, Mehault J, Michelson PF, Mitthumsiri W, Mizuno T, Monte C, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Naumann-Godo M, Nolan PL, Norris JP, Nuss E, Ohsugi T, Okumura A, Orlando E, Ormes JF, Ozaki M, Paneque D, Parent D, Pesce-Rollins M, Pierbattista M, Piron F, Pohl M, Prokhorov D, Rainò S, Rando R, Razzano M, Reposeur T, Ritz S, Saz Parkinson PM, Sgrò C, Siskind EJ, Smith PD, Spinelli P, Strong AW, Takahashi H, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Tibaldo L, Torres DF, Tosti G, Tramacere A, Troja E, Uchiyama Y, Vandenbroucke J, Vasileiou V, Vianello G, Vitale V, Waite AP, Wang P, Winer BL, Wood KS, Yang Z, Zimmer S, Bontemps S (2011) A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334:1103. doi:10.1126/science.1210311

    ADS  Google Scholar 

  • Ackermann M, Ajello M, Allafort A, Baldini L, Ballet J, Barbiellini G, Baring MG, Bastieri D, Bechtol K, Bellazzini R, Blandford RD, Bloom ED, Bonamente E, Borgland AW, Bottacini E, Brandt TJ, Bregeon J, Brigida M, Bruel P, Buehler R, Busetto G, Buson S, Caliandro GA, Cameron RA, Caraveo PA, Casandjian JM, Cecchi C, Çelik Ö, Charles E, Chaty S, Chaves RCG, Chekhtman A, Cheung CC, Chiang J, Chiaro G, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Cominsky LR, Conrad J, Corbel S, Cutini S, D’ammando F, Angelis AD, Palma FD, Dermer CD, Silva EDCE, Drell PS, Drlica-Wagner A, Falletti L, Favuzzi C, Ferrara EC, Franckowiak A, Fukazawa Y, Funk S, Fusco P, Gargano F, Germani S, Giglietto N, Giommi P, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guiriec S, Hadasch D, Hanabata Y, Harding AK, Hayashida M, Hayashi K, Hays E, Hewitt JW, Hill AB, Hughes RE, Jackson MS, Jogler T, Jóhannesson G, Johnson AS, Kamae T, Kataoka J, Katsuta J, Knödlseder J, Kuss M, Lande J, Larsson S, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lovellette MN, Lubrano P, Madejski GM, Massaro F, Mayer M, Mazziotta MN, Mcenery JE, Mehault J, Michelson PF, Mignani RP, Mitthumsiri W, Mizuno T, Moiseev AA, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nemmen R, Nuss E, Ohno M, Ohsugi T, Omodei N, Orienti M, Orlando E, Ormes JF, Paneque D, Perkins JS, Pesce-Rollins M, Piron F, Pivato G, Rainò S, Rando R, Razzano M, Razzaque S, Reimer A, Reimer O, Ritz S, Romoli C, Sánchez-Conde M, Schulz A, Sgrò C, Simeon PE, Siskind EJ, Smith DA, Spandre G, Spinelli P, Stecker FW, Strong AW, Suson DJ, Tajima H, Takahashi H, Takahashi T, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Thorsett SE, Tibaldo L, Tibolla O, Tinivella M, Troja E, Uchiyama Y, Usher TL, Vandenbroucke J, Vasileiou V, Vianello G, Vitale V, Waite AP, Werner M, Winer BL, Wood KS, Wood M, Yamazaki R, Yang Z, Zimmer S (2013) Detection of the characteristic pion-decay signature in supernova remnants. Science 339:807. doi:10.1126/science.1231160

    ADS  Google Scholar 

  • Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Bottai S, Bruno A, Cafagna F, Campana D, Carlson P, Casolino M, Castellini G, Pascale MPD, Rosa GD, Fedele D, Galper AM, Grishantseva L, Hofverberg P, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malvezzi V, Marcelli L, Menn W, Mikhailov VV, Minori M, Mocchiutti E, Nagni M, Orsi S, Osteria G, Papini P, Pearce M, Picozza P, Ricci M, Ricciarini SB, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Taddei E, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Zampa G, Zampa N, Zverev VG (2008) A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. doi:10.1103/PhysRevLett.102.051101. arXiv:0810.4994v2

  • Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Bottai S, Bruno A, Cafagna F, Campana D, Carlson P, Casolino M, Castellini G, de Pascale MP, de Rosa G, de Simone N, di Felice V, Galper AM, Grishantseva L, Hofverberg P, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malvezzi V, Marcelli L, Menn W, Mikhailov VV, Mocchiutti E, Orsi S, Osteria G, Papini P, Pearce M, Picozza P, Ricci M, Ricciarini SB, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Zampa G, Zampa N, Zverev VG (2009) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458:607. doi:10.1038/nature07942

    ADS  Google Scholar 

  • Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Borisov S, Bottai S, Bruno A, Cafagna F, Campana D, Carbone R, Carlson P, Casolino M, Castellini G, Consiglio L, Pascale MPD, Santis CD, Simone ND, Felice VD, Galper AM, Gillard W, Grishantseva L, Jerse G, Karelin AV, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malakhov V, Malvezzi V, Marcelli L, Mayorov AG, Menn W, Mikhailov VV, Mocchiutti E, Monaco A, Mori N, Nikonov N, Osteria G, Palma F, Papini P, Pearce M, Picozza P, Pizzolotto C, Ricci M, Ricciarini SB, Rossetto L, Sarkar R, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Zampa G, Zampa N, Zverev VG (2011) Pamela measurements of cosmic-ray proton and helium spectra. Science 332:69–72

    ADS  Google Scholar 

  • Aguilar M, Alberti G, Alpat B, Alvino A, Ambrosi G, Andeen K, Anderhub H, Arruda L, Azzarello P, Bachlechner A, Barao F, Baret B, Barrau A, Barrin L, Bartoloni A, Basara L, Basili A, Batalha L, Bates J, Battiston R, Bazo J, Becker R, Becker U, Behlmann M, Beischer B, Berdugo J, Berges P, Bertucci B, Bigongiari G, Biland A, Bindi V, Bizzaglia S, Boella G, de Boer W, Bollweg K, Bolmont J, Borgia B, Borsini S, Boschini MJ, Boudoul G, Bourquin M, Brun P, Buénerd M, Burger J, Burger W, Cadoux F, Cai XD, Capell M, Casadei D, Casaus J, Cascioli V, Castellini G, Cernuda I, Cervelli F, Chae MJ, Chang YH, Chen AI, Chen CR, Chen H, Cheng GM, Chen HS, Cheng L, Chernoplyiokov N, Chikanian A, Choumilov E, Choutko V, Chung CH, Clark C, Clavero R, Coignet G, Commichau V, Consolandi C, Contin A, Corti C, Dios MTC, Coste B, Crespo D, Cui Z, Dai M, Delgado C, Torre SD, Demirkoz B, Dennett P, Derome L, Falco SD, Diao XH, Diago A, Djambazov L, Díaz C, von Doetinchem P, Du WJ, Dubois JM, Duperay R, Duranti M, D’Urso D, Egorov A, Eline A, Eppling FJ, Eronen T, van Es J, Esser H, Falvard A, Fiandrini E, Fiasson A, Finch E, Fisher P, Flood K, Foglio R, Fohey M, Fopp S, Fouque N, Galaktionov Y, Gallilee M, Gallin-Martel L, Gallucci G, García B, García J, García-López R, García-Tabares L, Gargiulo C, Gast H, Gebauer I, Gentile S, Gervasi M, Gillard W, Giovacchini F, Girard L, Goglov P, Gong J, Goy-Henningsen C, Grandi D, Graziani M, Grechko A, Gross A, Guerri I, de la Guía C, Guo KH, Habiby M, Haino S, Hauler F, He ZH, Heil M, Heilig J, Hermel R, Hofer H, Huang ZC, Hungerford W, Incagli M, Ionica M, Jacholkowska A, Jang WY, Jinchi H, Jongmanns M, Journet L, Jungermann L, Karpinski W, Kim GN, Kim KS, Kirn T, Kossakowski R, Koulemzine A, Kounina O, Kounine A, Koutsenko V, Krafczyk MS, Laudi E, Laurenti G, Lauritzen C, Lebedev A, Lee MW, Lee SC, Leluc C, Vargas HL, Lepareur V, Li JQ, Li Q, Li TX, Li W, Li ZH, Lipari P, Lin CH, Liu D, Liu H, Lomtadze T, Lu YS, Lucidi S, Lübelsmeyer K, Luo JZ, Lustermann W, Lv S, Madsen J, Majka R, Malinin A, Mañá C, Marín J, Martin T, Martínez G, Masciocchi F, Masi N, Maurin D, McInturff A, McIntyre P, Menchaca-Rocha A, Meng Q, Menichelli M, Mereu I, Millinger M, Mo DC, Molina M, Mott P, Mujunen A, Natale S, Nemeth P, Ni JQ, Nikonov N, Nozzoli F, Nunes P, Obermeier A, Oh S, Oliva A, Palmonari F, Palomares C, Paniccia M, Papi A, Park WH, Pauluzzi M, Pauss F, Pauw A, Pedreschi E, Pensotti S, Pereira R, Perrin E, Pessina G, Pierschel G, Pilo F, Piluso A, Pizzolotto C, Plyaskin V, Pochon J, Pohl M, Poireau V, Porter S, Pouxe J, Putze A, Quadrani L, Qi XN, Rancoita PG, Rapin D, Ren ZL, Ricol JS, Riihonen E, Rodríguez I, Roeser U, Rosier-Lees S, Rossi L, Rozhkov A, Rozza D, Sabellek A, Sagdeev R, Sandweiss J, Santos B, Saouter P, Sarchioni M, Schael S, Schinzel D, Schmanau M, Schwering G, von Dratzig AS, Scolieri G, Seo ES, Shan BS, Shi JY, Shi YM, Siedenburg T, Siedling R, Son D, Spada F, Spinella F, Steuer M, Stiff K, Sun W, Sun WH, Sun XH, Tacconi M, Tang CP, Tang XW, Tang ZC, Tao L, Tassan-Viol J, Ting SCC, Ting SM, Titus C, Tomassetti N, Toral F, Torsti J, Tsai JR, Tutt JC, Ulbricht J, Urban T, Vagelli V, Valente E, Vannini C, Valtonen E, Trevino MV, Vaurynovich S, Vecchi M, Vergain M, Verlaat B, Vescovi C, Vialle JP, Viertel G, Volpini G, Wang D, Wang NH, Wang QL, Wang RS, Wang X, Wang ZX, Wallraff W, Weng ZL, Willenbrock M, Wlochal M, Wu H, Wu KY, Wu ZS, Xiao WJ, Xie S, Xiong RQ, Xin GM, Xu NS, Xu W, Yan Q, Yang J, Yang M, Ye QH, Yi H, Yu YJ, Yu ZQ, Zeissler S, Zhang JG, Zhang Z, Zhang MM, Zheng ZM, Zhuang HL, Zhukov V, Zichichi A, Zuccon P, Zurbach C (2013). First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys Rev Lett 110:141102. doi:10.1103/PhysRevLett.110.141102

    ADS  Google Scholar 

  • Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Breitling F, Brown AM, Chadwick PM, Chounet LM, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, O’C Drury L, Dubus G, Emmanoulopoulos D, Espigat P, Feinstein F, Fontaine G, Fuchs Y, Funk S, Gallant YA, Giebels B, Glicenstein JF, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Holleran M, Horns D, Jacholkowska A, de Jager OC, Khélifi B, Klages S, Komin N, Konopelko A, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, McComb TJL, de Naurois M, Nedbal D, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pühlhofer G, Punch M, Raubenheimer BC, Raue M, Rayner SM, Reimer A, Reimer O, Ripken J, Rob L, Rolland L, Rowell G, Sahakian V, Saugé L, Schlenker S, Schlickeiser R, Schuster C, Schwanke U, Siewert M, Sol H, Spangler D, Steenkamp R, Stegmann C, Superina G, Tavernet JP, Terrier R, Théoret CG, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Vincent P, Völk HJ, Wagner SJ (2006) A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron Astrophys 449:223–242. doi:10.1051/0004-6361:20054279. arXiv:astro-ph/0511678

    ADS  Google Scholar 

  • Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Brion E, Brown AM, Bühler R, Büsching I, Carrigan S, Chadwick PM, Chounet LM, Coignet G, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, O’C Drury L, Dubus G, Egberts K, Emmanoulopoulos D, Espigat P, Feinstein F, Ferrero E, Fiasson A, Fontaine G, Funk S, Funk S, Füßling M, Gallant YA, Giebels B, Glicenstein JF, Glück B, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jager OC, Kendziorra E, Kerschhaggl M, Khélifi B, Komin N, Konopelko A, Kosack K, Lamanna G, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, Maurin G, McComb TJL, Moulin, E, de Naurois M, Nedbal D, Nolan SJ, Noutsos A, Olive JP, Orford KJ, Osborne JL, Panter M, Pelletier G, Pita S, Pühlhofer G, Punch M, Ranchon S, Raubenheimer BC, Raue M, Rayner SM, Reimer A, Reimer O, Ripken J, Rob L, Rolland L, Rosier-Lees S, Rowell G, Sahakian V, Santangelo A, Saugé L, Schlenker S, Schlickeiser R, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sol H, Spangler D, Spanier F, Steenkamp R, Stegmann C, Superina G, Tam PH, Tavernet JP, Terrier R, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Vincent P, Völk HJ, Wagner SJ (2007) Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astron Astrophys 464:235–243. doi:10.1051/0004-6361:20066381. arXiv:astro-ph/0611813

    ADS  Google Scholar 

  • Aharonian FA (2013) Gamma rays from supernova remnants. Astropart Phys 43:71–80. doi:10.1016/j.astropartphys.2012.08.007

    ADS  Google Scholar 

  • Aharonian FA, Akhperjanian AG, Aye KM, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Berghaus P, Bernlöhr K, Bolz O, Boisson C, Borgmeier C, Breitling F, Brown AM, Bussons Gordo J, Chadwick PM, Chitnis VR, Chounet LM, Cornils R, Costamante L, Degrange B, Djannati-Ataï A, Drury LO, Ergin T, Espigat P, Feinstein F, Fleury P, Fontaine G, Funk S, Gallant YA, Giebels B, Gillessen S, Goret P, Guy J, Hadjichristidis C, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Holleran M, Horns D, de Jager OC, Jung I, Khélifi B, Komin N, Konopelko A, Latham IJ, Le Gallou R, Lemoine M, Lemière A, Leroy N, Lohse T, Marcowith A, Masterson C, McComb TJL, de Naurois M, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pohl M, Pühlhofer G, Punch M, Raubenheimer BC, Raue M, Raux J, Rayner SM, Redondo I, Reimer A, Reimer O, Ripken J, Rivoal M, Rob L, Rolland L, Rowell G, Sahakian V, Saugé L, Schlenker S, Schlickeiser R, Schuster C, Schwanke U, Siewert M, Sol H, Steenkamp R, Stegmann C, Tavernet JP, Théoret CG, Tluczykont M, van der Walt DJ, Vasileiadis G, Vincent P, Visser B, Völk HJ, Wagner SJ (2004) High-energy particle acceleration in the shell of a supernova remnant. Nature 432:75–77. doi:10.1038/nature02960. arXiv:astro-ph/0411533

    ADS  Google Scholar 

  • Ahn HS, Allison P, Bagliesi MG, Beatty JJ, Bigongiari G, Childers JT, Conklin NB, Coutu S, Duvernois MA, Ganel O, Han JH, Jeon JA, Kim KC, Lee MH, Lutz L, Maestro P, Malinin A, Marrocchesi PS, Minnick S, Mognet SI, Nam J, Nam S, Nutter SL, Park IH, Park NH, Seo ES, Sina R, Wu J, Yang J, Yoon YS, Zei R, Zinn SY (2010) Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys J Lett 714:L89. doi:10.1088/2041-8205/714/1/L89

    ADS  Google Scholar 

  • Aloisio R, Blasi P (2013) Propagation of galactic cosmic rays in the presence of self-generated turbulence. J Cosmol Astropart Phys 7:001. doi:10.1088/1475-7516/2013/07/001. arXiv:1306.2018

    ADS  Google Scholar 

  • Aloisio R, Berezinsky V, Gazizov A (2012) Transition from galactic to extragalactic cosmic rays. Astropart Phys 39:129–143. doi:10.1016/j.astropartphys.2012.09.007. arXiv:1211.0494

    ADS  Google Scholar 

  • Amato E, Blasi P (2005) A general solution to non-linear particle acceleration at non-relativistic shock waves. Mon Not R Astron Soc Lett 364:L76. doi:10.1111/j.1745-3933.2005.00110.x

    ADS  Google Scholar 

  • Amato E, Blasi P (2006) Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon Not R Astron Soc 371(3):1251–1258. doi:10.1111/j.1365-2966.2006.10739.x

    ADS  Google Scholar 

  • Amato E, Blasi P (2009) A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon Not R Astron Soc 392(4):1591–1600. doi:10.1111/j.1365-2966.2008.14200.x

    ADS  Google Scholar 

  • Apel WD, Arteaga-Velàzquez JC, Bekk K, Bertaina M, Blümer J, Bozdog H, Brancus IM, Cantoni E, Chiavassa A, Cossavella F, Daumiller K, de Souza V, Pierro FD, Doll P, Engel R, Engler J, Finger M, Fuchs B, Fuhrmann D, Gils HJ, Glasstetter R, Grupen C, Haungs A, Heck D, Hörandel JR, Huber D, Huege T, Kampert KH, Kang D, Klages HO, Link K, Łuczak P, Ludwig M, Mathes HJ, Mayer HJ, Melissas M, Milke J, Mitrica B, Morello C, Oehlschläger J, Ostapchenko S, Palmieri N, Petcu M, Pierog T, Rebel H, Roth M, Schieler H, Schoo S, Schröder FG, Sima O, Toma G, Trinchero GC, Ulrich H, Weindl A, Wochele J, Wommer M, Zabierowski J (2013) Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-GRANDE. Phys Rev D 87:081101(R)

    ADS  Google Scholar 

  • Axford WI, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. In: International cosmic ray conference, vol 11, pp 132–137

    Google Scholar 

  • Axford WI, Leer E, McKenzie JF (1982) The structure of cosmic ray shocks. Astron Astrophys 111:317–325

    ADS  MATH  Google Scholar 

  • Baade W, Zwicky F (1934) Remarks on super-novae and cosmic rays. Phys Rev 46:76. doi:10.1103/PhysRev.46.76.2

    ADS  Google Scholar 

  • Ballet J (2006) X-ray synchrotron emission from supernova remnants. Adv Space Res 37:1902–1908. doi:10.1016/j.asr.2005.03.047. arXiv:astro-ph/0503309

    ADS  Google Scholar 

  • Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. Mon Not R Astron Soc 182:147

    ADS  Google Scholar 

  • Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. Mon Not R Astron Soc 182:443

    ADS  Google Scholar 

  • Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon Not R Astron Soc 353:550. doi:10.1111/j.1365-2966.2004.08097.x

    ADS  Google Scholar 

  • Bell AR (2005) The interaction of cosmic rays and magnetized plasma. Mon Not R Astron Soc 358:181–187. doi:10.1111/j.1365-2966.2005.08774.x

    ADS  Google Scholar 

  • Bell AR, Lucek SG (2001) Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon Not R Astron Soc 321:433–438. doi:10.1046/j.1365-8711.2001.04063.x

    ADS  Google Scholar 

  • Bell AR, Schure KM, Reville B, Giacinti G (2013) Cosmic-ray acceleration and escape from supernova remnants. Mon Not R Astron Soc 431:415–429. doi:10.1093/mnras/stt179. arXiv:1301.7264

    ADS  Google Scholar 

  • Berezhko EG, Ellison DC (1999) A simple model of nonlinear diffusive shock acceleration. Astrophys J 526:385–399. doi:10.1086/307993

    ADS  Google Scholar 

  • Berezhko EG, Völk HJ (1997) Kinetic theory of cosmic rays and gamma rays in supernova remnants. I. Uniform interstellar medium. Astropart Phys 7:183–202. doi:10.1016/S0927-6505(97)00016-9

    ADS  Google Scholar 

  • Berezhko EG, Völk HJ (2000) Kinetic theory of cosmic ray and gamma-ray production in supernova remnants expanding into wind bubbles. Astron Astrophys 357:283–300. arXiv:astro-ph/0002411

    ADS  Google Scholar 

  • Berezhko EG, Völk HJ (2007) Spectrum of cosmic rays produced in supernova remnants. Astrophys J 661:L175. doi:10.1086/518737

    ADS  Google Scholar 

  • Berezhko EG, Yelshin VK, Ksenofontov LT (1994) Numerical investigation of cosmic ray acceleration in supernova remnants. Astropart Phys 2:215–227. doi:10.1016/0927-6505(94)90043-4

    ADS  Google Scholar 

  • Berezhko EG, Ksenofontov LT, Völk HJ (2013) The nature of gamma-ray emission of Tycho’s supernova remnant. Astrophys J 763:14. doi:10.1088/0004-637X/763/1/14. arXiv:1211.5398

    ADS  Google Scholar 

  • Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154:1. doi:10.1016/0370-1573(87)90134-7

    ADS  Google Scholar 

  • Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. Astrophys J 221:L29–L32. doi:10.1086/182658

    ADS  Google Scholar 

  • Blasi P (2002) A semi-analytical approach to non-linear shock acceleration. Astropart Phys 16:429. doi:10.1016/S0927-6505(01)00127-X

    ADS  Google Scholar 

  • Blasi P (2004) Nonlinear shock acceleration in the presence of seed particles. Astropart Phys 21:45. doi:10.1016/j.astropartphys.2003.10.008

    ADS  Google Scholar 

  • Blasi P, Amato E (2012a) Diffusive propagation of cosmic rays from supernova remnants in the galaxy. I. Spectrum and chemical composition. J Cosmol Astropart Phys 01:010. doi:10.1088/1475-7516/2012/01/010

    ADS  Google Scholar 

  • Blasi P, Amato E (2012b) Diffusive propagation of cosmic rays from supernova remnants in the galaxy. II: Anisotropy. J Cosmol Astropart Phys 01:011. doi:10.1088/1475-7516/2012/01/011

    ADS  Google Scholar 

  • Blasi P, Gabici S, Vannoni G (2005) On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon Not R Astron Soc 361:907. doi:10.1111/j.1365-2966.2005.09227.x

    ADS  Google Scholar 

  • Blasi P, Amato E, Caprioli D (2007) The maximum momentum of particles accelerated at cosmic ray modified shocks. Mon Not R Astron Soc 375(4):1471–1478. doi:10.1111/j.1365-2966.2006.11412.x

    ADS  Google Scholar 

  • Blasi P, Amato E, Serpico PD (2012a) Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy. Phys Rev Lett 109:61101. doi:10.1103/PhysRevLett.109.061101

    ADS  Google Scholar 

  • Blasi P, Morlino G, Bandiera R, Amato E, Caprioli D (2012) Collisionless shocks in a partially ionized medium. I. Neutral return flux and its effects on acceleration of test particles. Astrophys J 755:121. doi:10.1088/0004-637X/755/2/121. arXiv:1202.3080

    ADS  Google Scholar 

  • Brandt TJ, Acero F, de Palma F, Hewitt JW, Renaud M (Fermi LAT Collaboration) (2013a) The 1st Fermi LAT SNR catalog: constraining the cosmic ray contribution. arXiv:1307.6571

  • Brandt TJ, Ballet J, de Palma F, Johannesson G, Tibaldo L (Fermi LAT Collaboration) (2013b) The 1st Fermi LAT SNR catalog: the impact of interstellar emission modeling. arXiv:1307.6572

  • Bykov AM, Toptygin IN (2001) A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron Lett 27:625–633. doi:10.1134/1.1404456

    ADS  Google Scholar 

  • Bykov AM, Osipov SM, Toptygin IN (2009) Long-wavelength MHD instability in the prefront of collisionless shocks with accelerated particles. Astron Lett 35:555. doi:10.1134/S1063773709080052

    ADS  Google Scholar 

  • Bykov AM, Ellison DC, Renaud M (2011a) Magnetic fields in cosmic particle acceleration sources. doi:10.1007/s11214-011-9761-4. arXiv:1105.0130v1

  • Bykov AM, Osipov SM, Ellison DC (2011b) Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon Not R Astron Soc 410:39–52. doi:10.1111/j.1365-2966.2010.17421.x. arXiv:1010.0408

    ADS  Google Scholar 

  • Bykov AM, Brandenburg A, Malkov MA, Osipov SM (2013) Microphysics of cosmic ray driven plasma instabilities. Space Sci Rev. doi:10.1007/s11214-013-9988-3

    MATH  Google Scholar 

  • Caprioli D (2011) Understanding hadronic gamma-ray emission from supernova remnants. J Cosmol Astropart Phys 05:026. doi:10.1088/1475-7516/2011/05/026

    ADS  Google Scholar 

  • Caprioli D (2012) Cosmic-ray acceleration in supernova remnants: non-linear theory revised. J Cosmol Astropart Phys 07:038. doi:10.1088/1475-7516/2012/07/038

    ADS  Google Scholar 

  • Caprioli D, Spitkovsky A (2013) Cosmic-ray-induced filamentation instability in collisionless shocks. Astrophys J 765:L20. doi:10.1088/2041-8205/765/1/L20. arXiv:1211.6765

    ADS  Google Scholar 

  • Caprioli D, Blasi P, Amato E, Vietri M (2008) Dynamical effects of self-generated magnetic fields in cosmic-ray-modified shocks. Astrophys J 679:L139. doi:10.1086/589505

    ADS  Google Scholar 

  • Caprioli D, Blasi P, Amato E (2009a) On the escape of particles from cosmic ray modified shocks. Mon Not R Astron Soc 396(4):2065–2073. doi:10.1111/j.1365-2966.2008.14298.x

    ADS  Google Scholar 

  • Caprioli D, Blasi P, Amato E, Vietri M (2009b) Dynamical feedback of self-generated magnetic fields in cosmic ray modified shocks. Mon Not R Astron Soc 395(2):895–906. doi:10.1111/j.1365-2966.2009.14570.x

    ADS  Google Scholar 

  • Caprioli D, Amato E, Blasi P (2010a) The contribution of supernova remnants to the galactic cosmic ray spectrum. Astropart Phys 33(3):160–168. doi:10.1016/j.astropartphys.2010.01.002

    ADS  Google Scholar 

  • Caprioli D, Kang H, Vladimirov AE, Jones TW (2010b) Comparison of different methods for non-linear diffusive shock acceleration. Mon Not R Astron Soc 407:1773–1783. doi:10.1111/j.1365-2966.2010.17013.x. arXiv:1005.2127

    ADS  Google Scholar 

  • Cassam-Chenaï G, Hughes JP, Ballet J, Decourchelle A (2007) The blast wave of Tycho’s supernova remnant. Astrophys J 665:315–340. doi:10.1086/518782. arXiv:astro-ph/0703239

    ADS  Google Scholar 

  • Chevalier RA, Raymond JC (1978) Optical emission from a fast shock wave. The remnants of Tycho’s supernova and SN 1006. Astrophys J 225:L27–L30. doi:10.1086/182785

    ADS  Google Scholar 

  • Chevalier RA, Kirshner RP, Raymond JC (1980) The optical emission from a fast shock wave with application to supernova remnants. Astrophys J 235:186–195. doi:10.1086/157623

    ADS  Google Scholar 

  • DeMarco D, Blasi P, Stanev T (2007) Numerical propagation of high energy cosmic rays in the galaxy: I. Technical issues. J Cosmol Astropart Phys 06:027. doi:10.1088/1475-7516/2007/06/027

    ADS  Google Scholar 

  • Drury L (1983) On particle acceleration in supernova remnants. Space Sci Rev 36:57–60. doi:10.1007/BF00171901

    ADS  Google Scholar 

  • Drury LO (2011) Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova remnants? Mon Not R Astron Soc 415:1807–1814. doi:10.1111/j.1365-2966.2011.18824.x. arXiv:1009.4799

    ADS  Google Scholar 

  • Drury LO, Voelk JH (1981) Hydromagnetic shock structure in the presence of cosmic rays. Astrophys J 248:344–351. doi:10.1086/159159

    ADS  Google Scholar 

  • Effenberger F, Fichtner H, Scherer K, Büsching I (2012) Anisotropic diffusion of galactic cosmic ray protons and their steady-state azimuthal distribution. Astron Astrophys 547:120. doi:10.1051/0004-6361/201220203

    ADS  Google Scholar 

  • Ellison DC, Eichler D (1984) Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering. Astrophys J 286:691–701. doi:10.1086/162644

    ADS  Google Scholar 

  • Ellison DC, Drury LO, Meyer JP (1997) Galactic cosmic rays from supernova remnants. II. Shock acceleration of gas and dust. Astrophys J 487:197. doi:10.1086/304580

    ADS  Google Scholar 

  • Ellison DC, Patnaude DJ, Slane P, Blasi P, Gabici S (2007) Particle acceleration in supernova remnants and the production of thermal and nonthermal radiation. Astrophys J 661:879–891. doi:10.1086/517518. arXiv:astro-ph/0702674

    ADS  Google Scholar 

  • Ellison DC, Patnaude DJ, Slane P, Raymond J (2010) Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal x-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys J 712:287–293. doi:10.1088/0004-637X/712/1/287. arXiv:1001.1932

    ADS  Google Scholar 

  • Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75:1169–1174. doi:10.1103/PhysRev.75.1169

    ADS  MATH  Google Scholar 

  • Fermi E (1954) Galactic magnetic fields and the origin of cosmic radiation. Astrophys J 119:1. doi:10.1086/145789

    ADS  Google Scholar 

  • Fukui Y, Sano H, Sato J, Torii K, Horachi H, Hayakawa T, McClure-Griffiths NM, Rowell G, Inoue T, Inutsuka S, Kawamura A, Yamamoto H, Okuda T, Mizuno N, Onishi T, Mizuno A, Ogawa H (2012) A detailed study of the molecular and atomic gas toward the γ-ray supernova remnant RX J1713.7-3946: spatial TeV γ-ray and interstellar medium gas correspondence. Astrophys J 746:82. doi:10.1088/0004-637X/746/1/82. arXiv:1107.0508

    ADS  Google Scholar 

  • Gabici S, Aharonian FA, Blasi P (2007) Gamma rays from molecular clouds. Astrophys J Suppl Ser 309:365–371. doi:10.1007/s10509-007-9427-6. arXiv:astro-ph/0610032

    Google Scholar 

  • Gabici S, Aharonian FA, Casanova S (2009) Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon Not R Astron Soc 396:1629–1639. doi:10.1111/j.1365-2966.2009.14832.x. arXiv:0901.4549

    ADS  Google Scholar 

  • Gaisser TK, Stanev T, Tilav S (2013) Cosmic ray energy spectrum from measurements of air showers. arXiv:1303.3565v1

  • Gargaté L, Spitkovsky A (2012) Ion acceleration in non-relativistic astrophysical shocks. Astrophys J 744:67. doi:10.1088/0004-637X/744/1/67. arXiv:1107.0762

    ADS  Google Scholar 

  • Ghavamian P, Raymond J, Hartigan P, Blair WP (2000) Evidence for shock precursors in Tycho’s supernova remnant. Astrophys J 535:266–274. doi:10.1086/308811

    ADS  Google Scholar 

  • Ghavamian P, Laming JM, Rakowski CE (2007) A physical relationship between electron–proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys J 654:L69–L72. doi:10.1086/510740. arXiv:astro-ph/0611306

    ADS  Google Scholar 

  • Ghavamian P, Schwartz SJ, Mitchell J, Masters A, Laming JM (2013) Electron-ion temperature equilibration in collisionless shocks: the supernova remnant-solar wind connection. Space Sci Rev. doi:10.1007/s11214-013-9999-0. arXiv:1305.6617

    Google Scholar 

  • Giacalone J (2005) Particle acceleration at shocks moving through an irregular magnetic field. Astrophys J 624:765–772. doi:10.1086/429265

    ADS  Google Scholar 

  • Giacalone J (2013) Cosmic-ray transport and interaction with shocks. Space Sci Rev 176:73–88. doi:10.1007/s11214-011-9763-2

    ADS  Google Scholar 

  • Giacalone J, Jokipii JR (2007) Magnetic field amplification by shocks in turbulent fluids. Astrophys J 663:L41. doi:10.1086/519994

    ADS  Google Scholar 

  • Giacinti G, KachelrießM, Semikoz DV (2013) Anisotropic cosmic ray diffusion and its implications for gamma-ray astronomy. Phys Rev D 88(2):023010. doi:10.1103/PhysRevD.88.023010. arXiv:1306.3209

    ADS  Google Scholar 

  • Gieseler UDJ, Jones TW, Kang H (2000) Time dependent cosmic-ray shock acceleration with self-consistent injection. Astron Astrophys 364:911–922. arXiv:astro-ph/0011058

    ADS  Google Scholar 

  • Ginzburg VL, Syrovatsky SI (1961) Origin of cosmic rays. Prog Theor Phys Suppl 20:1. doi:10.1143/PTPS.20.1

    ADS  Google Scholar 

  • Giordano F, Naumann-Godo M, Ballet J, Bechtol K, Funk S, Lande J, Mazziotta MN, Rainò S, Tanaka T, Tibolla O, Uchiyama Y (2012) Fermi large area telescope detection of the young supernova remnant Tycho. Astrophys J 744:L2. doi:10.1088/2041-8205/744/1/L2. arXiv:1108.0265

    ADS  Google Scholar 

  • Giuliani A, Tavani M, Bulgarelli A, Striani E, Sabatini S, Cardillo M, Fukui Y, Kawamura A, Ohama A, Furukawa N, Torii K, Sano H, Aharonian FA, Verrecchia F, Argan A, Barbiellini G, Caraveo PA, Cattaneo PW, Chen AW, Cocco V, Costa E, D’Ammando F, Del Monte E, Paris G, Di Cocco G, Donnarumma I, Evangelista Y, Feroci M, Fiorini M, Froysland T, Fuschino F, Galli M, Gianotti F, Labanti C, Lapshov Y, Lazzarotto F, Lipari P, Longo F, Marisaldi M, Mereghetti S, Morselli A, Moretti E, Pacciani L, Pellizzoni A, Perotti F, Picozza P, Pilia M, Prest M, Pucella G, Rapisarda M, Rappoldi A, Soffitta P, Trifoglio M, Trois A, Vallazza E, Vercellone S, Vittorini V, Zambra A, Zanello D, Pittori C, Santolamazza P, Giommi P, Colafrancesco S (2010) AGILE detection of GeV γ-ray emission from the SNR W28. Astron Astrophys 516:L11. doi:10.1051/0004-6361/201014256. arXiv:1005.0784

    ADS  Google Scholar 

  • Giuliani A, Cardillo M, Tavani M, Fukui Y, Yoshiike S, Torii K, Dubner G, Castelletti G, Barbiellini G, Bulgarelli A, Caraveo P, Costa E, Cattaneo PW, Chen A, Contessi T, Del Monte E, Donnarumma I, Evangelista Y, Feroci M, Gianotti F, Lazzarotto F, Lucarelli F, Longo F, Marisaldi M, Mereghetti S, Pacciani L, Pellizzoni A, Piano G, Picozza P, Pittori C, Pucella G, Rapisarda M, Rappoldi A, Sabatini S, Soffitta P, Striani E, Trifoglio M, Trois A, Vercellone S, Verrecchia F, Vittorini V, Colafrancesco S, Giommi P, Bignami G (2011) Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys J 742:L30. doi:10.1088/2041-8205/742/2/L30. arXiv:1111.4868

    ADS  Google Scholar 

  • Goldreich P, Sridhar S (1995) Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys J 438:763. doi:10.1086/175121

    ADS  Google Scholar 

  • Helder EA, Vink J, Bassa CG, Bamba A, Bleeker JAM, Funk S, Ghavamian P, Heyden KJVD, Verbunt F, Yamazaki R (2009) Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325:719. doi:10.1126/science.1173383

    ADS  Google Scholar 

  • Helder EA, Kosenko D, Vink J (2010) Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys J Lett 719:L140. doi:10.1088/2041-8205/719/2/L140

    ADS  Google Scholar 

  • Helder EA, Kosenko D, Vink J (2011) Erratum: “Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5”. Astrophys J Lett 737:L46. doi:10.1088/2041-8205/737/2/L46

    ADS  Google Scholar 

  • Helder EA, Vink J, Bamba A, Bleeker JAM, Burrows DN, Ghavamian P, Yamazaki R (2013) Proper motions of H-alpha filaments in the supernova remnant RCW 86. arXiv:1306.3994

  • Heng K (2010) Balmer-dominated shocks: a concise review. Publ Astron Soc Aust 27:23–44. doi:10.1071/AS09057. arXiv:0908.4080

    ADS  Google Scholar 

  • Hewitt JW, Yusef-Zadeh F, Wardle M (2009) Correlation of supernova remnant Masers and gamma-ray sources. Astrophys J 706:L270–L274. doi:10.1088/0004-637X/706/2/L270. arXiv:0909.2827

    ADS  Google Scholar 

  • Higdon JC, Lingenfelter RE (2005) Ob associations, supernova-generated superbubbles, and the source of cosmic rays. Astrophys J 628:738. doi:10.1086/430814

    ADS  Google Scholar 

  • Higdon JC, Lingenfelter RE (2006) The superbubble origin for galactic cosmic rays. Adv Space Res 37:1913. doi:10.1016/j.asr.2005.07.071

    ADS  Google Scholar 

  • Higdon JC, Lingenfelter RE (2013) The galactic spatial distribution of ob associations and their surrounding supernova-generated superbubble. arXiv:1302.1223v1

  • Holder J (2012) TeV gamma-ray astronomy: a summary. Astropart Phys 39:61–75. doi:10.1016/j.astropartphys.2012.02.014. arXiv:1204.1267

    ADS  Google Scholar 

  • Höorandel JR (2006) A review of experimental results at the knee. J Phys Conf Ser 47:41–50. doi:10.1088/1742-6596/47/1/005. arXiv:astro-ph/0508014

    ADS  Google Scholar 

  • Hörandel JR (2004) Models of the knee in the energy spectrum of cosmic rays. Astropart Phys 21:241. doi:10.1016/j.astropartphys.2004.01.004

    ADS  Google Scholar 

  • Aartsen MG et al. (ICETOP Collaboration) (2013) Measurement of the cosmic ray energy spectrum with icetop-73. Phys Rev D 88:042004

    ADS  Google Scholar 

  • Jokipii JR (1982) Particle drift, diffusion, and acceleration at shocks. Astrophys J 255:716. doi:10.1086/159870

    ADS  Google Scholar 

  • Jokipii JR (1987) Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys J 313:842. doi:10.1086/165022

    ADS  Google Scholar 

  • Jokipii JR, Parker EN (1969a) Cosmic-ray life and the stochastic nature of the galactic magnetic field. Astrophys J 155:799. doi:10.1086/149910

    ADS  Google Scholar 

  • Jokipii JR, Parker EN (1969b) Stochastic aspects of magnetic lines of force with application to cosmic-ray propagation. Astrophys J 155:777. doi:10.1086/149909

    ADS  Google Scholar 

  • Juliusson E, Meyer P, Müller D (1972) Composition of cosmic-ray nuclei at high energies. Phys Rev Lett 29:445–448. doi:10.1103/PhysRevLett.29.445

    ADS  Google Scholar 

  • Knerr JM, Jokipii JR, Ellison DC (1996) A dynamical Monte Carlo simulation of a collisionless shock. Astrophys J 458:641. doi:10.1086/176846

    ADS  Google Scholar 

  • Krymskii GF (1977) A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl Akad Nauk SSSR 234:1306–1308

    ADS  Google Scholar 

  • Lagage PO, Cesarsky CJ (1983a) Cosmic-ray shock acceleration in the presence of self-excited waves. Astron Astrophys 118:223

    ADS  MATH  Google Scholar 

  • Lagage PO, Cesarsky CJ (1983b) The maximum energy of cosmic rays accelerated by supernova shocks. Astron Astrophys 125:249

    ADS  MATH  Google Scholar 

  • Lucek SG, Bell AR (2000) Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon Not R Astron Soc 314:65–74. doi:10.1046/j.1365-8711.2000.03363.x

    ADS  Google Scholar 

  • Maestro P, Ahn HS, Allison P, Bagliesi MG, Barbier L, Beatty JJ, Bigongiari G, Brandt TJ, Childers JT, Conklin NB, Coutu S, DuVernois MA, Ganel O, Han JH, Jeon JA, Kim KC, Lee MH, Malinine A, Marrocchesi PS, Minnick S, Mognet SI, Nam SW, Nutter S, Park IH, Park NH, Seo ES, Sina R, Walpole P, Yang J, Yoon YS, Zei R, Zinn SY (2010) Elemental energy spectra of cosmic rays measured by cream-II. arXiv:1003.5759v1

  • Malkov M, Drury L (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Prog Phys 64:429

    ADS  Google Scholar 

  • Malkov MA (1997) Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys J 485:638. doi:10.1086/304471. arXiv:astro-ph/9707152

    ADS  Google Scholar 

  • Malkov MA (1998) Ion leakage from quasiparallel collisionless shocks: implications for injection and shock dissipation. Phys Rev E 58:4911–4928. doi:10.1103/PhysRevE.58.4911. arXiv:astro-ph/9806340

    ADS  Google Scholar 

  • Malkov MA (1999) Asymptotic particle spectra and plasma flows at strong shocks. Astrophys J 511:L53–L56. doi:10.1086/311825. arXiv:astro-ph/9807097

    ADS  Google Scholar 

  • Malkov MA, Diamond PH, Sagdeev RZ, Aharonian FA, Moskalenko IV (2013) Analytic solution for self-regulated collective escape of cosmic rays from their acceleration sites. Astrophys J 768:73. doi:10.1088/0004-637X/768/1/73. arXiv:1207.4728

    ADS  Google Scholar 

  • Matthaeus WH, Qin G, Bieber JW, Zank GP (2003) Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys J 590:L53–L56. doi:10.1086/376613

    ADS  Google Scholar 

  • Maurin D, Melot F, Taillet R (2013) A database of charged cosmic rays. arXiv:1302.5525

  • McKee CF, Truelove JK (1995) Explosions in the interstellar medium. Phys Rep 256:157–172. doi:10.1016/0370-1573(94)00106-D

    ADS  Google Scholar 

  • Meyer JP, Drury LO, Ellison DC (1997) Galactic cosmic rays from supernova remnants. I. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys J 487:182. doi:10.1086/304599

    ADS  Google Scholar 

  • Morlino G, Caprioli D (2011) Strong evidences of hadron acceleration in Tycho’s supernova remnant. arXiv:1105.6342v2

  • Morlino G, Caprioli D (2012) Strong evidence for hadron acceleration in Tycho’s supernova remnant. Astron Astrophys 538:81. doi:10.1051/0004-6361/201117855

    ADS  Google Scholar 

  • Morlino G, Amato E, Blasi P (2009) Gamma-ray emission from SNR RX J1713.7–3946 and the origin of galactic cosmic rays. Mon Not R Astron Soc 392(1):240–250. doi:10.1111/j.1365-2966.2008.14033.x

    ADS  Google Scholar 

  • Morlino G, Bandiera R, Blasi P, Amato E (2012) Collisionless shocks in a partially ionized medium. II. Balmer emission. Astrophys J 760:137. doi:10.1088/0004-637X/760/2/137

    ADS  Google Scholar 

  • Morlino G, Blasi P, Bandiera R, Amato E (2013a) Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks. Astron Astrophys 558:A25, 6 pp

    ADS  Google Scholar 

  • Morlino G, Blasi P, Bandiera R, Amato E (2013b) Cosmic Ray acceleration and Balmer emission from SNR 0509-67.5. Astron Astrophys 557:A142, 7 pp

    ADS  Google Scholar 

  • Morlino G, Blasi P, Bandiera R, Amato E, Caprioli D (2013c) Collisionless shocks in a partially ionized medium. III. Efficient cosmic ray acceleration. Astrophys J 768:148. doi:10.1088/0004-637X/768/2/148. arXiv:1211.6148

    ADS  Google Scholar 

  • Nava L, Gabici S (2013) Anisotropic cosmic ray diffusion and gamma-ray production close to supernova remnants, with an application to w28. Mon Not R Astron Soc 429:1643. doi:10.1093/mnras/sts450

    ADS  Google Scholar 

  • Nikolić S, van de Ven G, Heng K, Kupko D, Husemann B, Raymond JC, Hughes JP, Falcón-Barroso J (2013) An integral view of fast shocks around supernova 1006. doi:10.1126/science.1228297. arXiv:1302.4328v1

  • Parizot E, Marcowith A, van der Swaluw E, Bykov AM, Tatischeff V (2004) Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astron Astrophys 424:747–760. doi:10.1051/0004-6361:20041269. arXiv:astro-ph/0405531

    ADS  Google Scholar 

  • Potgieter M (2013) Solar modulation of cosmic rays. Living Rev Sol Phys 10:3. doi:10.12942/lrsp-2013-3. arXiv:1306.4421

    ADS  Google Scholar 

  • Ptuskin V (2006) Cosmic ray transport in the galaxy. J Phys Conf Ser 47:113. doi:10.1088/1742-6596/47/1/014

    ADS  Google Scholar 

  • Ptuskin V, Zirakashvili V, Seo ES (2010) Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys J 718:31. doi:10.1088/0004-637X/718/1/31

    ADS  Google Scholar 

  • Reville B, Bell AR (2012) A filamentation instability for streaming cosmic rays. Mon Not R Astron Soc 419:2433–2440. doi:10.1111/j.1365-2966.2011.19892.x. arXiv:1109.5690

    ADS  Google Scholar 

  • Reville B, Bell AR (2013) Universal behaviour of shock precursors in the presence of efficient cosmic ray acceleration. Mon Not R Astron Soc 430:2873–2884. doi:10.1093/mnras/stt100. arXiv:1301.3173

    ADS  Google Scholar 

  • Riquelme MA, Spitkovsky A (2009) Nonlinear study of Bell’s cosmic ray current-driven instability. Astrophys J 694:626–642. doi:10.1088/0004-637X/694/1/626. arXiv:0810.4565

    ADS  Google Scholar 

  • Rodriguez Marrero AY, de Torres DF, Cea del Pozo E, Reimer O, Cillis AN (2008) Diffusion of cosmic rays and the gamma-ray large area telescope: phenomenology at the 1–100 GeV regime. Astrophys J 689:213–218. arXiv:0808.1834. doi:10.1086/592562

    ADS  Google Scholar 

  • Rossi B (1964) Cosmic rays. McGraw-Hill paperbacks in physics. McGraw-Hill, New York. http://books.google.it/books?id=K6kRAQAAIAAJ

    Google Scholar 

  • Sano T, Nishihara K, Matsuoka C, Inoue T (2012) Magnetic field amplification associated with the Richtmyer–Meshkov instability. Astrophys J 758:126. doi:10.1088/0004-637X/758/2/126. arXiv:1209.0961

    ADS  Google Scholar 

  • Schure KM, Bell AR (2013) Cosmic ray acceleration in young supernova remnants. arXiv:1307.6575v1

  • Schure KM, Bell AR, Drury LO, Bykov AM (2012) Diffusive shock acceleration and magnetic field amplification. Space Sci Rev 173:491. doi:10.1007/s11214-012-9871-7

    ADS  Google Scholar 

  • Serpico PD (2012) Astrophysical models for the origin of the positron “excess”. Astropart Phys 39:2–11. doi:10.1016/j.astropartphys.2011.08.007. arXiv:1108.4827

    ADS  Google Scholar 

  • Shalchi A, Büsching I, Lazarian A, Schlickeiser R (2010) Perpendicular diffusion of cosmic rays for a Goldreich–Sridhar spectrum. Astrophys J 725:2117. doi:10.1088/0004-637X/725/2/2117

    ADS  Google Scholar 

  • Simpson JA, Garcia-Munoz M (1988) Cosmic-ray lifetime in the galaxy—experimental results and models. Space Sci Rev 46:205. doi:10.1007/BF00212240

    ADS  Google Scholar 

  • Sironi L, Spitkovsky A (2011) Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys J 726:75. doi:10.1088/0004-637X/726/2/75. arXiv:1009.0024

    ADS  Google Scholar 

  • Skilling J (1975a) Cosmic ray streaming. I. Effect of Alfven waves on particles. Mon Not R Astron Soc 172:557

    ADS  Google Scholar 

  • Skilling J (1975b) Cosmic ray streaming. II. Effect of particles on Alfven waves. Mon Not R Astron Soc 173:245

    ADS  Google Scholar 

  • Sokolsky P (2013) Results from the telescope array and review of HiRes. In: European physical journal web of conferences, vol 52, p 6002. doi:10.1051/epjconf/20125206002

    Google Scholar 

  • Sokolsky P, Thomson GB (2007) Topical review: Highest energy cosmic-rays and results from the HiRes experiment. J Phys G, Nucl Part Phys 34:401. doi:10.1088/0954-3899/34/11/R01. arXiv:0706.1248

    ADS  Google Scholar 

  • Sollerman J, Ghavamian P, Lundqvist P, Smith RC (2003) High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. Astron Astrophys 407:249. doi:10.1051/0004-6361:20030839

    ADS  Google Scholar 

  • Spitkovsky A (2008a) On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophys J 673:L39–L42. doi:10.1086/527374. arXiv:0706.3126

    ADS  Google Scholar 

  • Spitkovsky A (2008b) Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys J 682:L5–L8. doi:10.1086/590248. arXiv:0802.3216

    ADS  Google Scholar 

  • Spitzer L (1962) Physics of fully ionized gases. Wiley, New York

    Google Scholar 

  • Tavani M, Giuliani A, Chen AW, Argan A, Barbiellini G, Bulgarelli A, Caraveo P, Cattaneo PW, Cocco V, Contessi T, D’ammando F, Costa E, Paris GD, Monte ED, Cocco GD, Donnarumma I, Evangelista Y, Ferrari A, Feroci M, Fuschino F, Galli M, Gianotti F, Labanti C, Lapshov I, Lazzarotto F, Lipari P, Longo F, Marisaldi M, Mastropietro M, Mereghetti S, Morelli E, Moretti E, Morselli A, Pacciani L, Pellizzoni A, Perotti F, Piano G, Picozza P, Pilia M, Pucella G, Prest M, Rapisarda M, Rappoldi A, Scalise E, Rubini A, Sabatini S, Striani E, Soffitta P, Trifoglio M, Trois A, Vallazza E, Vercellone S, Vittorini V, Zambra A, Zanello D, Pittori C, Verrecchia F, Santolamazza P, Giommi P, Colafrancesco S, Antonelli LA, Salotti L (2010) Direct evidence for hadronic cosmic-ray acceleration in the supernova remnant IC 443. Astrophys J Lett 710:L151. doi:10.1088/2041-8205/710/2/L151

    ADS  Google Scholar 

  • Thoudam S, Hörandel JR (2012) Nearby supernova remnants and the cosmic ray spectral hardening at high energies. Mon Not R Astron Soc 421:1209–1214. doi:10.1111/j.1365-2966.2011.20385.x. arXiv:1112.3020

    ADS  Google Scholar 

  • Thoudam S, Hörandel JR (2013) Revisiting the hardening of the cosmic-ray energy spectrum at TeV energies. arXiv:1304.1400

  • Tomassetti N (2012) Origin of the cosmic-ray spectral hardening. Astrophys J Lett 752(1):L13, 5 pp

    ADS  Google Scholar 

  • Treumann RA (2009) Fundamentals of collisionless shocks for astrophysical application. 1. Non-relativistic shocks. Astron Astrophys Rev 17:409. doi:10.1007/s00159-009-0024-2

    ADS  Google Scholar 

  • Uchiyama Y, Takahashi T, Aharonian FA (2002) Flat spectrum X-ray emission from the direction of a molecular cloud associated with SNR RX J1713.7-3946. Publ Astron Soc Jpn 54:L73–L77. arXiv:astro-ph/0208049

    ADS  Google Scholar 

  • van Adelsberg M, Heng K, McCray R, Raymond JC (2008) Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys J 689:1089–1104. doi:10.1086/592680. arXiv:0803.2521

    ADS  Google Scholar 

  • Vink J (2012) Supernova remnants: the x-ray perspective. Astron Astrophys Rev 20:49. doi:10.1007/s00159-011-0049-1

    ADS  Google Scholar 

  • Vladimirov AE, Bykov AM, Ellison DC (2008) Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys J 688:1084–1101. doi:10.1086/592240. arXiv:0807.1321

    ADS  Google Scholar 

  • Völk HJ, Berezhko EG, Ksenofontov LT (2005) Magnetic field amplification in Tycho and other shell-type supernova remnants. Astron Astrophys 433:229. doi:10.1051/0004-6361:20042015

    ADS  Google Scholar 

  • Warren JS, Hughes JP, Badenes C, Ghavamian P, McKee CF, Moffett D, Plucinsky PP, Rakowski C, Reynoso E, Slane P (2005) Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys J 634:376–389. doi:10.1086/496941. arXiv:astro-ph/0507478

    ADS  Google Scholar 

  • Zirakashvili VN, Ptuskin VS (2012) Numerical simulations of diffusive shock acceleration in SNRs. Astropart Phys 39:12–21. doi:10.1016/j.astropartphys.2011.09.003. arXiv:1109.4482

    ADS  Google Scholar 

  • Zirakashvili VN, Ptuskin VS, Völk HJ (2008) Modeling Bell’s nonresonant cosmic-ray instability. Astrophys J 678:255–261. doi:10.1086/529579. arXiv:0801.4486

    ADS  Google Scholar 

  • Zweibel EG (1979) Energetic particle trapping by Alfven wave instabilities. In: Proceedings of the workshop on particle acceleration mechanisms in astrophysics, vol 56, p 319. doi:10.1063/1.32090

    Google Scholar 

  • Zweibel EG, Everett JE (2010) Environments for magnetic field amplification by cosmic rays. Astrophys J 709:1412. doi:10.1088/0004-637X/709/2/1412

    ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to his friends and colleagues in the Arcetri High Energy Astrophysics Group, R. Aloisio, E. Amato, R. Bandiera, N. Bucciantini, G. Morlino, O. Petruk for daily discussions on everything, as well as to D. Caprioli and P.D. Serpico for continuous collaboration and to Tom Gaisser for providing Fig. 1. The author is also grateful to Tony Bell for a long discussion at the Aspen Center for Physics. This work was completed while at the Aspen Center for Physics, supported in part by the National Science Foundation under Grant No. PHYS-1066293, by the Simons Foundation and by PRIN INAF 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Blasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasi, P. The origin of galactic cosmic rays. Astron Astrophys Rev 21, 70 (2013). https://doi.org/10.1007/s00159-013-0070-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-013-0070-7

Keywords

Navigation