Skip to main content
Log in

Nonthermal particles and photons in starburst regions and superbubbles

  • REVIEW ARTICLE
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Starforming factories in galaxies produce compact clusters and loose associations of young massive stars. Fast radiation-driven winds and supernovae input their huge kinetic power into the interstellar medium in the form of highly supersonic and superalfvenic outflows. Apart from gas heating, collisionless relaxation of fast plasma outflows results in fluctuating magnetic fields and energetic particles. The energetic particles comprise a long-lived component which may contain a sizeable fraction of the kinetic energy released by the winds and supernova ejecta and thus modify the magnetohydrodynamic flows in the systems. We present a concise review of observational data and models of nonthermal emission from starburst galaxies, superbubbles, and compact clusters of massive stars. Efficient mechanisms of particle acceleration and amplification of fluctuating magnetic fields with a wide dynamical range in starburst regions are discussed. Sources of cosmic rays, neutrinos and multi-wavelength nonthermal emission associated with starburst regions including potential galactic “PeVatrons” are reviewed in the global galactic ecology context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aartsen MG, Abbasi R, Abdou Y, Ackermann M, Adams J, Aguilar JA, Ahlers M, Altmann D, Auffenberg J, Bai X et al (2013) First observation of PeV-energy neutrinos with IceCube. Phys Rev Lett 111(2):021103. doi:10.1103/PhysRevLett.111.021103

    ADS  Google Scholar 

  • Aartsen MG, Ackermann M, Adams J, Aguilar JA, Ahlers M, Ahrens M, Altmann D, Anderson T, Arguelles C, Arlen TC et al (2014) Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys Rev Lett 113(10):101101. doi:10.1103/PhysRevLett.113.101101

    ADS  Google Scholar 

  • Abbott DC (1982) The theory of radiatively driven stellar winds. II—The line acceleration. Astrophys J 259:282–301. doi:10.1086/160166

    ADS  Google Scholar 

  • Abdo AA, Fermi LAT (2010) Detection of gamma-ray emission from the starburst galaxies M82 and NGC 253 with the large area telescope on Fermi. Astrophys J Lett 709:L152–L157. doi:10.1088/2041-8205/709/2/L152. arXiv:0911.5327

  • Abdo AA, Ackermann M, Ajello M, Atwood WB, Axelsson M, Baldini L, Ballet J, Band DL, Barbiellini G, Bastieri D et al (2009) Fermi/large area telescope bright gamma-ray source list. Astrophys J Suppl 183:46–66. doi:10.1088/0067-0049/183/1/46. arXiv:0902.1340

  • Abdo AA, Ackermann M, Fermi LAT Collaboration (2010) Observations of the large magellanic cloud with Fermi. Astron Astrophys 512:A7. doi:10.1051/0004-6361/200913474

  • Abramowski A, HESS Collaboration (2012) Spectral analysis and interpretation of the \(\gamma \)-ray emission from the starburst galaxy NGC 253. Astrophys J 757:158. doi:10.1088/0004-637X/757/2/158. arXiv:1205.5485

  • Abramowski A et al (2012) Discovery of extended VHE \(\gamma \)-ray emission from the vicinity of the young massive stellar cluster Westerlund 1. Astron Astrophys 537:A114. doi:10.1051/0004-6361/201117928. arXiv:1111.2043

  • Acero F et al (2009) Detection of gamma rays from a starburst galaxy. Science 326:1080. doi:10.1126/science.1178826. arXiv:0909.4651

  • Ackermann M et al (2011) A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334:1103. doi:10.1126/science.1210311

    ADS  Google Scholar 

  • Ackermann M et al (2012) GeV observations of star-forming galaxies with the Fermi Large Area Telescope. Astrophys J 755:164. doi:10.1088/0004-637X/755/2/164. arXiv:1206.1346

  • Aharonian FA (2004) Very high energy cosmic gamma radiation: a crucial window on the extreme Universe. World Scientific Publishing, River Edge

    Google Scholar 

  • Aharonian F, Collaboration HEGRA et al (2002) An unidentified TeV source in the vicinity of Cygnus OB2. Astron Astrophys 393:L37–L40. doi:10.1051/0004-6361:20021171. arXiv:astro-ph/0207528

  • Aharonian F et al (2006) The HESS survey of the Inner Galaxy in very high energy gamma rays. Astrophys J 636:777–797. doi:10.1086/498013. arXiv:astro-ph/0510397

  • Aharonian F et al (2007) Primary particle acceleration above 100 TeV in the shell-type supernova remnant \(<\)ASTROBJ\(>\)RX J1713.7-3946\(<\)/ASTROBJ\(>\) with deep HESS observations. Astron Astrophys 464:235–243. doi:10.1051/0004-6361:20066381. arXiv:astro-ph/0611813

  • Albert J et al (2008) MAGIC observations of the unidentified \(\gamma \)-ray source TeV J2032+4130. Astrophys J Lett 675:L25–L28. doi:10.1086/529520. arXiv:0801.2391

  • Alexandrova O, Chen CHK, Sorriso-Valvo L, Horbury TS, Bale SD (2013) Solar wind turbulence and the role of ion instabilities. Space Sci Rev 178:101–139. doi:10.1007/s11214-013-0004-8. arXiv:1306.5336

  • Alonso-Herrero A, Rieke GH, Rieke MJ, Kelly DM (2003) The [Fe II] 1.644 micron emission in M82 and NGC 253: is it a measure of the supernova rate? Astron J 125:1210–1225. doi:10.1086/367790. arXiv:astro-ph/0212142

  • Amato E (2014) The origin of galactic cosmic rays. Int J Mod Phys D 23:1430013. doi:10.1142/S0218271814300134. arXiv:1406.7714

  • Amato E, Blasi P (2005) A general solution to non-linear particle acceleration at non-relativistic shock waves. MNRAS 364:L76–L80. doi:10.1111/j.1745-3933.2005.00110.x. arXiv:astro-ph/0509673

  • Anchordoqui LA, Paul TC, da Silva LHM, Torres DF, Vlcek BJ (2014) What IceCube data tell us about neutrino emission from star-forming galaxies (so far). Phys Rev D 89(12):127304. doi:10.1103/PhysRevD.89.127304. arXiv:1405.7648

  • Anderson J, Piotto G, King IR, Bedin LR, Guhathakurta P (2009) Mixed populations in globular clusters: Et Tu, 47 Tuc? Astrophys J Lett 697:L58–L62. doi:10.1088/0004-637X/697/1/L58. arXiv:0904.1626

  • Andrews JE, Calzetti D, Chandar R, Lee JC, Elmegreen BG, Kennicutt RC, Whitmore B, Kissel JS, da Silva RL, Krumholz MR, O’Connell RW, Dopita MA, Frogel JA, Kim H (2013) An initial mass function study of the dwarf starburst galaxy NGC 4214. Astrophys J 767:51. doi:10.1088/0004-637X/767/1/51. arXiv:1302.5006

  • Antecki T, Schlickeiser R, Zhang M (2013) Stochastic acceleration of suprathermal particles under pressure balance conditions. Astrophys J 764:89. doi:10.1088/0004-637X/764/1/89

    ADS  Google Scholar 

  • Apel WD et al (2013) Separation of the light and heavy mass groups of 10\(^{16}\)–10\(^{18}\) eV cosmic rays by studying the ratio muon size to shower size of KASCADE-Grande data. J Phys Conf Ser 409(1):012095. doi: 10.1088/1742-6596/409/1/012095

    ADS  Google Scholar 

  • Armstrong JW, Rickett BJ, Spangler SR (1995) Electron density power spectrum in the local interstellar medium. Astrophys J 443:209–221. doi:10.1086/175515

    ADS  Google Scholar 

  • Arons J (2003) Magnetars in the metagalaxy: an origin for ultra-high-energy cosmic rays in the nearby universe. Astrophys J 589:871–892. doi:10.1086/374776. arXiv:astro-ph/0208444

  • Artemyev AV, Hoshino M, Lutsenko VN, Petrukovich AA, Imada S, Zelenyi LM (2013) Double power-law spectra of energetic electrons in the Earth magnetotail. Annales Geophysicae 31:91–106. doi:10.5194/angeo-31-91-2013

    ADS  Google Scholar 

  • Ashour-Abdalla M, El-Alaoui M, Goldstein ML, Zhou M, Schriver D, Richard R, Walker R, Kivelson MG, Hwang KJ (2011) Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat Phys 7:360–365. doi:10.1038/nphys1903

    Google Scholar 

  • Axford WI (1981) The acceleration of galactic cosmic rays. In: Setti G, Spada G, Wolfendale AW (eds) Origin of cosmic rays, IAU symposium, vol 94, pp 339–358

  • Axford WI (1994) The origins of high-energy cosmic rays. Astrophys J Suppl 90:937–944. doi:10.1086/191928

    ADS  Google Scholar 

  • Bale SD, Kellogg PJ, Mozer FS, Horbury TS, Reme H (2005) Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys Rev Lett 94(21):215002. doi:10.1103/PhysRevLett.94.215002. arXiv:physics/0503103

  • Bamba A, Ueno M, Nakajima H, Koyama K (2004) Thermal and nonthermal X-rays from the large magellanic cloud superbubble 30 Doradus C. Astrophys J 602:257–263. doi:10.1086/380957. arXiv:astro-ph/0310713

  • Bamba A, Yamazaki R, Yoshida T, Terasawa T, Koyama K (2005) A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys J 621:793–802. doi:10.1086/427620. arXiv:astro-ph/0411326

  • Bastian N, Covey KR, Meyer MR (2010) A universal stellar initial mass function? A critical look at variations. Ann Rev Astron Astrophys 48:339–389. doi:10.1146/annurev-astro-082708-101642. arXiv:1001.2965

  • Batejat F, Conway JE, Hurley R, Parra R, Diamond PJ, Lonsdale CJ, Lonsdale CJ (2011) Resolution of the compact radio continuum sources in Arp220. Astrophys J 740:95. doi:10.1088/0004-637X/740/2/95. arXiv:1109.6443

  • Baumgartner V, Breitschwerdt D (2013) Superbubble evolution in disk galaxies. I. Study of blow-out by analytical models. Astron Astrophys 557:A140. doi:10.1051/0004-6361/201321261. arXiv:1402.0194

  • Beck R (2012) Magnetic fields in galaxies. Space Sci Rev 166:215–230. doi:10.1007/s11214-011-9782-z

    ADS  Google Scholar 

  • Bednarek W (2005) GeV gamma-rays and TeV neutrinos from very massive compact binary systems: the case of WR 20a. Mon Not R Astron Soc 363:L46–L50. doi:10.1111/j.1745-3933.2005.00081.x. arXiv:astro-ph/0507565

  • Bell AR (1978) The acceleration of cosmic rays in shock fronts. I. MNRAS 182:147–156

    ADS  Google Scholar 

  • Bell AR (2004) Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS 353:550–558. doi:10.1111/j.1365-2966.2004.08097.x

    ADS  Google Scholar 

  • Bell AR (2013) Cosmic ray acceleration. Astropart Phys 43:56–70. doi:10.1016/j.astropartphys.2012.05.022

    ADS  Google Scholar 

  • Bell AR, Lucek SG (2001) Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon Not R Astron Soc 321:433–438. doi:10.1046/j.1365-8711.2001.04063.x

    ADS  Google Scholar 

  • Bell AR, Schure KM, Reville B, Giacinti G (2013) Cosmic-ray acceleration and escape from supernova remnants. Mon Not R Astron Soc 431:415–429. doi:10.1093/mnras/stt179. arXiv:1301.7264

  • Berezhko EG, Krymskiĭ GF (1988) Reviews of topical problems: acceleration of cosmic rays by shock waves. Sov Phys Uspekhi 31:27–51. doi:10.1070/PU1988v031n01ABEH002534

    ADS  Google Scholar 

  • Berezhnev SF et al (2013) The Tunka—multi-component EAS detector for high energy cosmic ray studies. Nucl Instrum Methods Phys Res A 732:281–285. doi:10.1016/j.nima.2013.05.180

    ADS  Google Scholar 

  • Berezinskii VS, Bulanov SV, Dogiel VA, Ginzburg VL, Ptuskin VS (1990) Astrophysics of cosmic rays. North-Holland, Amsterdam

    Google Scholar 

  • Bessho N, Bhattacharjee A (2012) Fast magnetic reconnection and particle acceleration in relativistic low-density electron-positron plasmas without guide field. Astrophys J 750:129. doi:10.1088/0004-637X/750/2/129

    ADS  Google Scholar 

  • Biermann P (1976) On the radio continuum flux from the disks of spiral galaxies. Astron Astrophys 53:295–303

    ADS  Google Scholar 

  • Biermann PL (1997) Topical review: the origin of the highest energy cosmic rays. J Phys G Nucl Phys 23:1–27. doi:10.1088/0954-3899/23/1/002

    ADS  Google Scholar 

  • Binns WR, Wiedenbeck ME, Arnould M, Cummings AC, de Nolfo GA, Goriely S, Israel MH, Leske RA, Mewaldt RA, Stone EC, von Rosenvinge TT (2008) The OB association origin of galactic cosmic rays. New Astron Rev 52:427–430. doi:10.1016/j.newar.2008.05.008

    ADS  Google Scholar 

  • Birn J, Priest ER (2007) Reconnection of magnetic fields. Cambridge University Press

  • Birn J, Thomsen MF, Hesse M (2004) Electron acceleration in the dynamic magnetotail: test particle orbits in three-dimensional magnetohydrodynamic simulation fields. Phys Plasmas 11:1825–1833. doi:10.1063/1.1704641

    ADS  Google Scholar 

  • Birn J, Artemyev AV, Baker DN, Echim M, Hoshino M, Zelenyi LM (2012) Particle acceleration in the magnetotail and aurora. Space Sci Rev 173:49–102. doi:10.1007/s11214-012-9874-4

    ADS  Google Scholar 

  • Biskamp D (2008) Magnetohydrodynamic turbulence. Cambridge University Press

  • Bisnovatyi-Kogan GS, Silich SA (1995) Shock-wave propagation in the nonuniform interstellar medium. Rev Mod Phys 67:661–712. doi:10.1103/RevModPhys.67.661

    ADS  Google Scholar 

  • Bland-Hawthorn J, Cohen M (2003) The large-scale bipolar wind in the galactic center. Astrophys J 582:246–256. doi:10.1086/344573. arXiv:astro-ph/0208553

  • Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rep 154:1–75. doi:10.1016/0370-1573(87)90134-7

    ADS  Google Scholar 

  • Blasi P (2002) A semi-analytical approach to non-linear shock acceleration. Astropart Phys 16:429–439. doi:10.1016/S0927-6505(01)00127-X. arXiv:astro-ph/0104064

  • Blasi P (2013) The origin of galactic cosmic rays. Astron Astrophys Rev 21:70. doi:10.1007/s00159-013-0070-7. arXiv:1311.7346

  • Blasi P, Epstein RI, Olinto AV (2000) Ultra-high-energy cosmic rays from young neutron star winds. Astrophys J Lett 533:L123–L126. doi:10.1086/312626. arXiv:astro-ph/9912240

  • Blasi P, Morlino G, Bandiera R, Amato E, Caprioli D (2012) Collisionless shocks in a partially ionized medium. I. Neutral return flux and its effects on acceleration of test particles. Astrophys J 755:121. doi:10.1088/0004-637X/755/2/121. arXiv:1202.3080

  • Blitz L, Rosolowsky E (2006) The role of pressure in GMC formation II: the \(\text{ H }_{2}\)-pressure relation. Astrophys J 650:933–944. doi:10.1086/505417. arXiv:astro-ph/0605035

  • Bocchino F, Bykov AM, Chen Y, Krassilchtchikov AM, Levenfish KP, Miceli M, Pavlov GG, Uvarov YA, Zhou X (2012) A population of isolated hard X-ray sources near the supernova remnant Kes 69. Astron Astrophys 541:A152. doi:10.1051/0004-6361/201219005. arXiv:1204.3470

  • Bolatto AD, Warren SR, Leroy AK, Walter F, Veilleux S, Ostriker EC, Ott J, Zwaan M, Fisher DB, Weiss A, Rosolowsky E, Hodge J (2013) Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind. Nature 499:450–453. doi:10.1038/nature12351

    ADS  Google Scholar 

  • Bonnell IA, Larson RB, Zinnecker H (2007) The origin of the initial mass function. In: Protostars and planets V, pp 149–164. arXiv:astro-ph/0603447

  • Booth CM, Agertz O, Kravtsov AV, Gnedin NY (2013) Simulations of disk galaxies with cosmic ray driven galactic winds. Astrophys J Lett 777:L16. doi:10.1088/2041-8205/777/1/L16. arXiv:1308.4974

  • Brandenburg A, Nordlund Å (2011) Astrophysical turbulence modeling. Rep Prog Phys 74(4):046901. doi:10.1088/0034-4885/74/4/046901. arXiv:0912.1340

  • Bromm V, Larson RB (2004) The first stars. Ann Rev Astron Astrophys 42:79–118. doi:10.1146/annurev.astro.42.053102.134034. arXiv:astro-ph/0311019

  • Bulanov SV, Sasorov PV (1976) Energy spectrum of particles accelerated in the neighborhood of a line of zero magnetic field. Sov Astron Lett 19:464–468

    Google Scholar 

  • Burgess D, Scholer M (2013) Microphysics of quasi-parallel shocks in collisionless plasmas. Space Sci Rev 178:513–533. doi:10.1007/s11214-013-9969-6

    ADS  Google Scholar 

  • Butt YM, Bykov AM (2008) A cosmic-ray resolution to the superbubble energy crisis. Astrophys J Lett 677:L21–L22. doi:10.1086/587875. arXiv:0802.3805

  • Butt YM, Benaglia P, Combi JA, Corcoran M, Dame TM, Drake J, Kaufman Bernadó M, Milne P, Miniati F, Pohl M, Reimer O, Romero GE, Rupen M (2003) Chandra/very large array follow-up of TeV J2032+4131, the only unidentified TeV gamma-ray source. Astrophys J 597:494–512. doi:10.1086/378121. arXiv:astro-ph/0302342

  • Bykov AM (2001) Particle acceleration and nonthermal phenomena in superbubbles. Space Sci Rev 99:317–326

    ADS  Google Scholar 

  • Bykov AM (2002) X-ray line emission from supernova ejecta fragments. Astron Astrophys 390:327–335. doi:10.1051/0004-6361:20020694. arXiv:astro-ph/0205225

  • Bykov AM (2003) Faint hard X-ray sources in the Galactic Center region: supernova ejecta fragments population. Astron Astrophys 410:L5–L8. doi:10.1051/0004-6361:20031355. arXiv:astro-ph/0309234

  • Bykov AM, Fleishman GD (1992) On non-thermal particle generation in superbubbles. Mon Not R Astron Soc 255:269–275

    ADS  Google Scholar 

  • Bykov AM, Fleishman GD (2009) Particle acceleration by strong turbulence in solar flares: theory of spectrum evolution. Astrophys J Lett 692:L45–L49. doi:10.1088/0004-637X/692/1/L45. arXiv:0901.2677

  • Bykov AM, Toptygin I (1993) Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Phys Uspekhi 36:1020–1052. doi:10.1070/PU1993v036n11ABEH002179

    ADS  Google Scholar 

  • Bykov AM, Toptygin IN (2001) A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron Lett 27:625–633. doi:10.1134/1.1404456

    ADS  Google Scholar 

  • Bykov AM, Treumann RA (2011) Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks. Astron Astrophys Rev 19:42. doi:10.1007/s00159-011-0042-8. arXiv:1105.3221

  • Bykov AM, Chevalier RA, Ellison DC, Uvarov YA (2000) Nonthermal emission from a supernova remnant in a molecular cloud. Astrophys J 538:203–216. doi:10.1086/309103. arXiv:astro-ph/0003235

  • Bykov AM, Dolag K, Durret F (2008) Cosmological shock waves. Space Sci Rev 134:119–140. doi:10.1007/s11214-008-9312-9. arXiv:0801.0995

  • Bykov AM, Ellison DC, Renaud M (2012) Magnetic fields in cosmic particle acceleration sources. Space Sci Rev 166:71–95. doi:10.1007/s11214-011-9761-4. arXiv:1105.0130

  • Bykov AM, Brandenburg A, Malkov MA, Osipov SM (2013a) Microphysics of cosmic ray driven plasma instabilities. Space Sci Rev 178:201–232. doi:10.1007/s11214-013-9988-3. arXiv:1304.7081

  • Bykov AM, Gladilin PE, Osipov SM (2013b) Non-linear model of particle acceleration at colliding shock flows. Mon Not R Astron Soc 429:2755–2762. doi:10.1093/mnras/sts553. arXiv:1212.1556

  • Bykov AM, Malkov MA, Raymond JC, Krassilchtchikov AM, Vladimirov AE (2013c) Collisionless shocks in partly ionized plasma with cosmic rays: microphysics of non-thermal components. Space Sci Rev 178:599–632. doi:10.1007/s11214-013-9984-7. arXiv:1304.0998

  • Bykov AM, Ellison DC, Osipov SM, Vladimirov AE (2014) Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities. Astrophys J 789:137. doi:10.1088/0004-637X/789/2/137. arXiv:1406.0084

  • Capelli R, Warwick RS, Porquet D, Gillessen S, Predehl P (2011) Fe K\(\alpha \) line emission from the Arches cluster region—evidence for ongoing particle bombardment? Astron Astrophys 530:A38. doi:10.1051/0004-6361/201116574. arXiv:1104.2039

  • Caprioli D, Spitkovsky A (2013) Cosmic-ray-induced filamentation instability in collisionless shocks. Astrophys J Lett 765:L20. arXiv:1211.6765

  • Caprioli D, Amato E, Blasi P (2010) Non-linear diffusive shock acceleration with free-escape boundary. Astropart Phys 33:307–311. doi:10.1016/j.astropartphys.2010.03.001. arXiv:0912.2714

  • Carretti E, Crocker RM, Staveley-Smith L, Haverkorn M, Purcell C, Gaensler BM, Bernardi G, Kesteven MJ, Poppi S (2013) Giant magnetized outflows from the centre of the Milky Way. Nature 493:66–69. doi:10.1038/nature11734. arXiv:1301.0512

  • Casse M, Paul JA (1982) On the stellar origin of the Ne-22 excess in cosmic rays. Astrophys J 258:860–863. doi:10.1086/160132

    ADS  Google Scholar 

  • Castor J, McCray R, Weaver R (1975) Interstellar bubbles. Astrophys J Lett 200:L107–L110. doi:10.1086/181908

    ADS  Google Scholar 

  • Cesarsky CJ, Montmerle T (1983) Gamma rays from active regions in the galaxy—the possible contribution of stellar winds. Space Sci Rev 36:173–193. doi:10.1007/BF00167503

    ADS  Google Scholar 

  • Chabrier G, Baraffe I (2000) Theory of low-mass stars and substellar objects. Ann Rev Astron Astrophys 38:337–377. doi:10.1146/annurev.astro.38.1.337. arXiv:astro-ph/0006383

  • Chevalier RA (1999) Supernova remnants in molecular clouds. Astrophys J 511:798–811. doi:10.1086/306710. arXiv:astro-ph/9805315

  • Chevalier RA (2005) Young core-collapse supernova remnants and their supernovae. Astrophys J 619:839–855. doi:10.1086/426584. arXiv:astro-ph/0409013

  • Chevalier RA (2014) Supernova interaction with dense mass loss. In: Ray A, McCray RA (eds) IAU symposium, vol 296, pp 95–102. doi:10.1017/S1743921313009290. arXiv:1304.5500

  • Chevalier RA, Clegg AW (1985) Wind from a starburst galaxy nucleus. Nature 317:44. doi:10.1038/317044a0

    ADS  Google Scholar 

  • Chiosi C, Maeder A (1986) The evolution of massive stars with mass loss. Ann Rev Astron Astrophys 24:329–375. doi:10.1146/annurev.aa.24.090186.001553

    ADS  Google Scholar 

  • Chu YH (2008) Bubbles and superbubbles: observations and theory. In: Bresolin F, Crowther PA, Puls J (eds) IAU symposium, vol 250, pp 341–354. doi:10.1017/S1743921308020681

  • Clark JS, Negueruela I, Ritchie B, Crowther P, Dougherty S (2010) Dissecting the galactic super star cluster Westerlund 1—a laboratory for stellar evolution. Messenger 142:31–35

    ADS  Google Scholar 

  • Combes F (1991) Distribution of CO in the Milky Way. Ann Rev Astron Astrophys 29:195–237. doi:10.1146/annurev.aa.29.090191.001211

    ADS  Google Scholar 

  • Condon JJ (1992) Radio emission from normal galaxies. Ann Rev Astron Astrophys 30:575–611. doi:10.1146/annurev.aa.30.090192.003043

    ADS  Google Scholar 

  • Cram L, Hopkins A, Mobasher B, Rowan-Robinson M (1998) Star formation rates in faint radio galaxies. Astrophys J 507:155–160. doi:10.1086/306333. arXiv:astro-ph/9805327

  • Crocker RM (2012) Non-thermal insights on mass and energy flows through the Galactic Centre and into the Fermi bubbles. Mon Not R Astron Soc 423:3512–3539. doi:10.1111/j.1365-2966.2012.21149.x. arXiv:1112.6247

  • Crowther PA, Schnurr O, Hirschi R, Yusof N, Parker RJ, Goodwin SP, Kassim HA (2010) The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted \(150\text{ M }_{\rm solar}\) stellar mass limit. Mon Not R Astron Soc 408:731–751. doi:10.1111/j.1365-2966.2010.17167.x. arXiv:1007.3284

  • Damineli A et al (2008) The periodicity of the \(\eta \) Carinae events. Mon Not R Astron Soc 384:1649–1656. doi:10.1111/j.1365-2966.2007.12815.x. arXiv:0711.4250

  • De Becker M (2007) Non-thermal emission processes in massive binaries. Astron Astrophys Rev 14:171–216. doi:10.1007/s00159-007-0005-2. arXiv:0709.4220

  • De Becker M, Raucq F (2013) Catalogue of particle-accelerating colliding-wind binaries. Astron Astrophys 558:A28. doi:10.1051/0004-6361/201322074. arXiv:1308.3149

  • de Jong T, Klein U, Wielebinski R, Wunderlich E (1985) Radio continuum and far-infrared emission from spiral galaxies—a close correlation. Astron Astrophys 147:L6–L9

    ADS  Google Scholar 

  • Dobrovolskas V, Kučinskas A, Bonifacio P, Korotin SA, Steffen M, Sbordone L, Caffau E, Ludwig HG, Royer F, Prakapavičius D (2014) Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae. Astron Astrophys 565:A121. doi:10.1051/0004-6361/201322868. arXiv:1311.1072

  • Dogiel V, Chernyshov D, Koyama K, Nobukawa M, Cheng KS (2011a) K-shell emission of neutral iron line from sagittarius B2 excited by subrelativistic protons. Publ Astron Soc Jpn 63:535. doi:10.1093/pasj/63.3.535. arXiv:1104.4484

  • Dogiel VA, Cheng KS, Chernyshov DO, Ip WH, Ko CM, Tatischeff V (2011b) X- and gamma-ray Emission from the galactic center. In: Morris MR, Wang QD, Yuan F (eds) The galactic center: a window to the nuclear environment of disk galaxies, astronomical society of the pacific conference series, vol 439, p 426. arXiv:1002.1379

  • Dorfi EA, Breitschwerdt D (2012) Time-dependent galactic winds. I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration. Astron Astrophys 540:A77. doi:10.1051/0004-6361/201118082. arXiv:1304.1311

  • Dougherty SM, Beasley AJ, Claussen MJ, Zauderer BA, Bolingbroke NJ (2005) High-resolution radio observations of the colliding-wind binary WR 140. Astrophys J 623:447–459. doi:10.1086/428494. arXiv:astro-ph/0501391

  • Draine BT (2011) Physics of the interstellar and intergalactic medium. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Drake JF, Swisdak M, Che H, Shay MA (2006) Electron acceleration from contracting magnetic islands during reconnection. Nature 443:553–556. doi:10.1038/nature05116

    ADS  Google Scholar 

  • Drury LO (1983) An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep Prog Phys 46:973–1027. doi:10.1088/0034-4885/46/8/002

    ADS  Google Scholar 

  • Dubus G (2013) Gamma-ray binaries and related systems. Astron Astrophys Rev 21:64. doi:10.1007/s00159-013-0064-5. arXiv:1307.7083

  • Dudok de Wit T, Alexandrova O, Furno I, Sorriso-Valvo L, Zimbardo G (2013) Methods for characterising microphysical processes in plasmas. Space Sci Rev 178:665–693. doi:10.1007/s11214-013-9974-9. arXiv:1306.5303

  • Durré M, Mould J (2014) Young star clusters in the circumnuclear region of NGC 2110. Astrophys J 784(1):1–9

  • Dwarkadas VV, Telezhinsky I, Pohl M (2012) On the maximum energy and escape of accelerated particles in young supernova remnants. In: Aharonian FA, Hofmann W, Rieger FM (eds) American Institute of Physics conference series, vol 1505, pp 245–248. doi:10.1063/1.4772243

  • Dwek E, Krennrich F (2013) The extragalactic background light and the gamma-ray opacity of the universe. Astropart Phys 43:112–133. doi:10.1016/j.astropartphys.2012.09.003. arXiv:1209.4661

  • Eichler D, Usov V (1993) Particle acceleration and nonthermal radio emission in binaries of early-type stars. Astrophys J 402:271–279. doi:10.1086/172130

    ADS  Google Scholar 

  • Ellison DC, Bykov AM (2011) Gamma-ray emission of accelerated particles escaping a supernova remnant in a molecular cloud. Astrophys J 731:87. doi:10.1088/0004-637X/731/2/87. arXiv:1102.3885

  • Ellison DC, Slane P, Patnaude DJ, Bykov AM (2012) Core-collapse model of broadband emission from SNR RX J1713.7-3946 with thermal X-rays and gamma rays from escaping cosmic rays. Astrophys J 744:39. doi:10.1088/0004-637X/744/1/39. arXiv:1109.0874

  • Elmegreen BG (2011a) Star formation on galactic scales: empirical laws. In: Charbonnel C, Montmerle T (eds) EAS publications series, vol 51, pp 3–17. doi:10.1051/eas/1151001. arXiv:1101.3108

  • Elmegreen BG (2011b) Star formation patterns and hierarchies. In: Charbonnel C, Montmerle T (eds) EAS publications series, vol 51, pp 31–44. doi:10.1051/eas/1151003. arXiv:1101.3111

  • Elmegreen BG (2011c) Triggered star formation. In: Charbonnel C, Montmerle T (eds) EAS publications series, vol 51, pp 45–58. doi:10.1051/eas/1151004. arXiv:1101.3112

  • Elmegreen BG (2012) What triggers star formation in galaxies? In: Tuffs RJ, Popescu CC (eds) IAU symposium, vol 284, pp 317–329. doi:10.1017/S1743921312009350. arXiv:1201.3659

  • Elmegreen BG, Lada CJ (1977) Sequential formation of subgroups in OB associations. Astrophys J 214:725–741. doi:10.1086/155302

    ADS  Google Scholar 

  • Erlykin AD, Wolfendale AW (2012) A new component of cosmic rays? Astropart Phys 35:449–456. doi:10.1016/j.astropartphys.2011.11.012

    ADS  Google Scholar 

  • Farnier C, Walter R, Leyder JC (2011) \(\eta \) Carinae: a very large hadron collider. Astron Astrophys 526:A57. doi: 10.1051/0004-6361/201015590

    ADS  Google Scholar 

  • Federrath C, Sur S, Schleicher DRG, Banerjee R, Klessen RS (2011) A new jeans resolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys J 731:62. doi:10.1088/0004-637X/731/1/62. arXiv:1102.0266

  • Feigelson ED, Townsley LK, Broos PS, Busk HA, Getman KV, King RR, Kuhn MA, Naylor T, Povich MS, Baddeley A, Bate MR, Indebetouw R, Luhman KL, McCaughrean MJ, Pittard JM, Pudritz RE, Sills A, Song Y, Wadsley J (2013) Overview of the massive young star-forming complex study in infrared and X-ray (MYStIX) project. Astrophys J Suppl 209:26. doi:10.1088/0067-0049/209/2/26. arXiv:1309.4483

  • Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75:1169–1174. doi:10.1103/PhysRev.75.1169

    ADS  MATH  Google Scholar 

  • Fermi E (1954) Galactic magnetic fields and the origin of cosmic radiation. Astrophys J 119:1. doi:10.1086/145789

    ADS  Google Scholar 

  • Ferrand G, Marcowith A (2010) On the shape of the spectrum of cosmic rays accelerated inside superbubbles. Astron Astrophys 510:A101. doi:10.1051/0004-6361/200913520. arXiv:0911.4457

  • Ferrière K (2008) Large-scale distribution of interstellar matter in the central region of our Galaxy. Astronomische Nachrichten 329:992. doi:10.1002/asna.200811054

    ADS  Google Scholar 

  • Figer DF (2008) Young massive clusters. In: Bresolin F, Crowther PA, Puls J (eds) IAU symposium, vol 250, pp 247–256. doi:10.1017/S1743921308020565. arXiv:0801.4178

  • Figer DF, Najarro F, Gilmore D, Morris M, Kim SS, Serabyn E, McLean IS, Gilbert AM, Graham JR, Larkin JE, Levenson NA, Teplitz HI (2002) Massive stars in the arches cluster. Astrophys J 581:258–275. doi:10.1086/344154. arXiv:astro-ph/0208145

  • Fisk LA, Gloeckler G (2006) The common spectrum for accelerated ions in the quiet-time solar wind. Astrophys J Lett 640:L79–L82. doi:10.1086/503293

    ADS  Google Scholar 

  • Fisk LA, Gloeckler G (2012) Particle acceleration in the heliosphere: implications for astrophysics. Space Sci Rev 173:433–458. doi:10.1007/s11214-012-9899-8

    ADS  Google Scholar 

  • Gabici S, Aharonian FA, Casanova S (2009) Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon Not R Astron Soc 396:1629–1639. doi:10.1111/j.1365-2966.2009.14832.x. arXiv:0901.4549

  • Gargaté L, Spitkovsky A (2012) Ion acceleration in non-relativistic astrophysical shocks. Astrophys J 744:67. doi:10.1088/0004-637X/744/1/67. arXiv:1107.0762

  • Georgy C, Walder R, Folini D, Bykov A, Marcowith A, Favre JM (2013) Circumstellar medium around rotating massive stars at solar metallicity. Astron Astrophys 559:A69. doi:10.1051/0004-6361/201321226. arXiv:1309.1360

  • Georgy C, Granada A, Ekström S, Meynet G, Anderson RI, Wyttenbach A, Eggenberger P, Maeder A (2014) Populations of rotating stars. III. SYCLIST, the new Geneva population synthesis code. Astron Astrophys 566:A21. doi:10.1051/0004-6361/201423881. arXiv:1404.6952

  • Giacalone J, Burgess D, Schwartz SJ, Ellison DC, Bennett L (1997) Injection and acceleration of thermal protons at quasi-parallel shocks: a hybrid simulation parameter survey. J Geophys Res 102:19789–19804. doi:10.1029/97JA01529

    ADS  Google Scholar 

  • Ginzburg VL, Syrovatskii SI (1964) The origin of cosmic rays. Macmillan, New York

    Google Scholar 

  • Grigis PC, Benz AO (2006) Electron acceleration in solar flares: theory of spectral evolution. Astron Astrophys 458:641–651. doi:10.1051/0004-6361:20065809. arXiv:astro-ph/0606339

  • Groh JH, Nielsen KE, Damineli A, Gull TR, Madura TI, Hillier DJ, Teodoro M, Driebe T, Weigelt G, Hartman H, Kerber F, Okazaki AT, Owocki SP, Millour F, Murakawa K, Kraus S, Hofmann KH, Schertl D (2010) Detection of high-velocity material from the wind-wind collision zone of Eta Carinae across the 2009.0 periastron passage. Astron Astrophys 517:A9. doi:10.1051/0004-6361/200913937. arXiv:1003.4527

  • Guesten R, Mezger PG (1982) Star formation and abundance gradients in the galaxy. Vistas Astron 26:159–224. doi:10.1016/0083-6656(82)90005-8

    ADS  Google Scholar 

  • Guibert J, Lequeux J, Viallefond F (1978) Star formation in interstellar gas density in our Galaxy. Astron Astrophys 68:1–15

    ADS  Google Scholar 

  • Hanasz M, Otmianowska-Mazur K, Kowal G, Lesch H (2009) Cosmic-ray-driven dynamo in galactic disks. A parameter study. Astron Astrophys 498:335–346. doi:10.1051/0004-6361/200810279. arXiv:0812.3906

  • Harayama Y, Eisenhauer F, Martins F (2008) The initial mass function of the massive star-forming region NGC 3603 from near-infrared adaptive optics observations. Astrophys J 675:1319–1342. doi:10.1086/524650. arXiv:0710.2882

  • Hartquist TW, Pittard JM, Falle SAEG (2007) Diffuse matter from star forming regions to active galaxies—a volume honouring John Dyson. doi:10.1007/978-1-4020-5425-9

  • Heiles C (1990) Clustered supernovae versus the gaseous disk and halo. Astrophys J 354:483–491. doi:10.1086/168709

    ADS  Google Scholar 

  • Heiles C (2001) The McKee/Ostriker model: paradigm? In: Woodward CE, Bicay MD, Shull JM (eds) Tetons 4: galactic structure, stars and the interstellar medium. Astronomical Society of the Pacific conference series, vol 231, p 294. arXiv:astro-ph/0010047

  • Heiles C, Haverkorn M (2012) Magnetic fields in the multiphase interstellar medium. Space Sci Rev 166:293–305. doi:10.1007/s11214-012-9866-4

    ADS  Google Scholar 

  • Helder EA, Vink J, Bykov AM, Ohira Y, Raymond JC, Terrier R (2012) Observational signatures of particle acceleration in supernova remnants. Space Sci Rev 173:369–431. doi:10.1007/s11214-012-9919-8. arXiv:1206.1593

  • Helou G, Soifer BT, Rowan-Robinson M (1985) Thermal infrared and nonthermal radio—remarkable correlation in disks of galaxies. Astrophys J Lett 298:L7–L11. doi:10.1086/184556

    ADS  Google Scholar 

  • Hennebelle P, Falgarone E (2012) Turbulent molecular clouds. Astron Astrophys Rev 20:55. doi:10.1007/s00159-012-0055-y. arXiv:1211.0637

  • Hennebelle P, Iffrig O (2014) Simulations of magnetized multiphase galactic disk regulated by supernovae explosions. Astron Astrophys 570:1–17

  • HESS Collaboration, Abramowski A et al (2011) Revisiting the Westerlund 2 field with the HESS telescope array. Astron Astrophys 525:A46. doi:10.1051/0004-6361/201015290. arXiv:1009.3012

  • Higdon JC, Lingenfelter RE (2005) OB associations, supernova-generated superbubbles, and the source of cosmic rays. Astrophys J 628:738–749. doi:10.1086/430814

    ADS  Google Scholar 

  • Higdon JC, Lingenfelter RE, Ramaty R (1998) Cosmic-ray acceleration from supernova ejecta in superbubbles. Astrophys J Lett 509:L33–L36. doi:10.1086/311757

    ADS  Google Scholar 

  • Hillas AM (2005) Topical review: can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J Phys G Nucl Phys 31:95. doi:10.1088/0954-3899/31/5/R02

    ADS  Google Scholar 

  • Hoshino M (2005) Electron surfing acceleration in magnetic reconnection. J Geophys Res (Space Phys) 110:A10215. doi:10.1029/2005JA011229. arXiv:astro-ph/0507528

  • Hoshino M (2012) Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys Rev Lett 108(13):135003. doi:10.1103/PhysRevLett. 108.135003. arXiv:1201.0837

  • Huang ZP, Thuan TX, Chevalier RA, Condon JJ, Yin QF (1994) Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants. Astrophys J 424:114–125. doi:10.1086/173876

    ADS  Google Scholar 

  • IceCube Collaboration, Aartsen MG, Abbasi R, Abdou Y, Ackermann M, Adams J, Aguilar JA, Ahlers M, Altmann D, Auffenberg J et al (2013a) Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342(1242):856. doi:10.1126/science.1242856. arXiv:1311.5238

  • IceCube Collaboration, Aartsen MG, Abbasi R, Abdou Y, Ackermann M, Adams J, Aguilar JA, Ahlers M, Altmann D, Auffenberg J et al (2013b) Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube. Astropart Phys 42:15–32. doi:10.1016/j.astropartphys.2012.11.003. arXiv:1207.3455

  • Jokipii JR, Lee MA (2010) Compression acceleration in astrophysical plasmas and the production of f(v) vprop v \(^{-5}\) spectra in the heliosphere. Astrophys J 713:475–483. doi: 10.1088/0004-637X/713/1/475

    ADS  Google Scholar 

  • Jones FC (1994) A theoretical review of diffusive shock acceleration. Astrophys J Suppl 90:561–565. doi:10.1086/191875

    ADS  Google Scholar 

  • Jones FC, Ellison DC (1991) The plasma physics of shock acceleration. Space Sci Rev 58:259–346. doi:10.1007/BF01206003

    ADS  Google Scholar 

  • Kamae T, Karlsson N, Mizuno T, Abe T, Koi T (2006) Parameterization of \(\gamma , \text{ e }^{+/-}\), and neutrino spectra produced by p-p interaction in astronomical environments. ApJ 647:692–708. doi:10.1086/505189. arXiv:astro-ph/0605581

  • Karimabadi H, Roytershteyn V, Wan M, Matthaeus WH, Daughton W, Wu P, Shay M, Loring B, Borovsky J, Leonardis E, Chapman SC, Nakamura TKM (2013) Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys Plasmas 20(1):012303. doi:10.1063/1.4773205

    ADS  Google Scholar 

  • Kashiyama K, Mészáros P (2014) Galaxy mergers as a source of cosmic rays, neutrinos, and gamma rays. Astrophys J Lett 790:L14. doi:10.1088/2041-8205/790/1/L14. arXiv:1405.3262

  • Kato TN, Takabe H (2008) Nonrelativistic collisionless shocks in unmagnetized electron-ion plasmas. Astrophys J Lett 681:L93–L96. doi:10.1086/590387. arXiv:0804.0052

  • Kato TN, Takabe H (2010) Nonrelativistic collisionless shocks in weakly magnetized electron-ion plasmas: two-dimensional particle-in-cell simulation of perpendicular shock. Astrophys J 721:828–842. doi:10.1088/0004-637X/721/1/828. arXiv:1008.0265

  • Kavanagh PJ, Norci L, Meurs EJA (2011) Diffuse thermal X-ray emission in the core of the young massive cluster Westerlund 1. New Astron 16:461–469. doi:10.1016/j.newast.2011.04.001. arXiv:1106.2665

  • Kavanagh PJ, Sasaki M, Bozzetto LM, Filipovic MD, Points SD, Maggi P, Haberl F (2014) XMM-Newton study of 30 Dor C and a newly identified MCSNR J0536-6913 in the Large Magellanic Cloud. arXiv:1409.6547

  • Kelner SR, Aharonian FA, Bugayov VV (2006) Energy spectra of gamma rays, electrons, and neutrinos produced at proton–proton interactions in the very high energy regime. Phys Rev D 74(3):034018. doi:10.1103/PhysRevD.74.034018. arXiv:astro-ph/0606058

  • Kennicutt RC Jr (1998a) Star formation in galaxies along the hubble sequence. Ann Rev Astron Astrophys 36:189–232. doi:10.1146/annurev.astro.36.1.189. arXiv:astro-ph/9807187

  • Kennicutt RC Jr (1998b) The global schmidt law in star-forming galaxies. Astrophys J 498:541–552. doi:10.1086/305588. arXiv:astro-ph/9712213

  • Kennicutt RC, Evans NJ (2012) Star formation in the Milky Way and nearby galaxies. Ann Rev Astron Astrophys 50:531–608. doi:10.1146/annurev-astro-081811-125610. arXiv:1204.3552

  • Kirk JG, Duffy P, Gallant YA (1996) Stochastic particle acceleration at shocks in the presence of braided magnetic fields. Astron Astrophys 314:1010–1016. arXiv:astro-ph/9604056

  • Klepach EG, Ptuskin VS, Zirakashvili VN (2000) Cosmic ray acceleration by multiple spherical shocks. Astropart Phys 13:161–172. doi:10.1016/S0927-6505(99)00108-5

    ADS  Google Scholar 

  • Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady 30:301–305

    ADS  Google Scholar 

  • Krause M, Fierlinger K, Diehl R, Burkert A, Voss R, Ziegler U (2013) Feedback by massive stars and the emergence of superbubbles. I. Energy efficiency and Vishniac instabilities. Astron Astrophys 550:A49. doi:10.1051/0004-6361/201220060. arXiv:1207.7231

  • Krause M, Diehl R, Böhringer H, Freyberg M, Lubos D (2014) Feedback by massive stars and the emergence of superbubbles II. X-ray properties. Astron Astrophys 566:1–13

  • Krivonos RA et al (2014) First hard X-ray detection of the non-thermal emission around the arches cluster: morphology and spectral studies with NuSTAR. Astrophys J 781:107. doi:10.1088/0004-637X/781/2/107. arXiv:1312.2635

  • Kronberg PP, Biermann P, Schwab FR (1985) The nucleus of M82 at radio and X-ray bands–discovery of a new radio population of supernova candidates. Astrophys J 291:693–707. doi:10.1086/163108

    ADS  Google Scholar 

  • Kroupa P (2001) On the variation of the initial mass function. Mon Not R Astron Soc 322:231–246. doi:10.1046/j.1365-8711.2001.04022.x. arXiv:astro-ph/0009005

  • Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91. doi:10.1126/science.1067524. arXiv:astro-ph/0201098

  • Krumholz MR (2014) The big problems in star formation: the star formation rate, stellar clustering, and the initial mass function. arXiv:1402.0867

  • Krumholz MR, McKee CF (2005) A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys J 630:250–268. doi:10.1086/431734. arXiv:astro-ph/0505177

  • Krumholz MR, Bate MR, Arce HG, Dale JE, Gutermuth R, Klein RI, Li ZY, Nakamura F, Zhang Q (2014) Star cluster formation and feedback. arXiv:1401.2473

  • Kudritzki RP, Puls J (2000) Winds from hot stars. Ann Rev Astron Astrophys 38:613–666. doi:10.1146/annurev.astro.38.1.613

    ADS  Google Scholar 

  • Lacki BC (2013) From 10K to 10 TK: insights on the interaction between cosmic rays and gas in starbursts. In: Torres DF, Reimer O (eds) Cosmic rays in star-forming environments. Advances in solid state physics, vol 34, p 411. doi:10.1007/978-3-642-35410-629. arXiv:1308.5241

  • Lacki BC, Thompson TA, Quataert E, Loeb A, Waxman E (2011) On the GeV and TeV detections of the starburst galaxies M82 and NGC 253. Astrophys J 734:107. doi:10.1088/0004-637X/734/2/107. arXiv:1003.3257

  • Lada CJ, Lada EA (2003) Embedded clusters in molecular clouds. Ann Rev Astron Astrophys 41:57–115. doi:10.1146/annurev.astro.41.011802.094844. arXiv:astro-ph/0301540

  • Lamers HJGLM, Cassinelli JP (1999) Introduction to stellar winds. Cambridge University Press

  • Lang CC, Johnson KE, Goss WM, Rodríguez LF (2005) Stellar winds and embedded star formation in the galactic center quintuplet and arches clusters: multifrequency radio observations. Astron J 130:2185–2196. doi:10.1086/496976. arXiv:astro-ph/0508178

  • Langer N (2013) Magnetic fields in stars: origin and impact. In: Magnetic fields throughout stellar evolution, proceedings of the international astronomical union, IAU symposium, vol 302. Cambridge University Press, pp 1–9

  • Law CJ (2010) A multiwavelength view of a mass outflow from the galactic center. Astrophys J 708:474–484. doi:10.1088/0004-637X/708/1/474. arXiv:0911.2061

  • Law C, Yusef-Zadeh F (2004) X-ray observations of stellar clusters near the galactic center. Astrophys J 611:858–870. doi:10.1086/422307. arXiv:astro-ph/0404544

  • Lazarian A, Opher M (2009) A model of acceleration of anomalous cosmic rays by reconnection in the heliosheath. Astrophys J 703:8–21. doi:10.1088/0004-637X/703/1/8. arXiv:0905.1120

  • Leamon RJ, Smith CW, Ness NF, Matthaeus WH, Wong HK (1998) Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J Geophys Res 103:4775. doi:10.1029/97JA03394

    ADS  Google Scholar 

  • Lemoine M, Pelletier G (2010) On electromagnetic instabilities at ultra-relativistic shock waves. Mon Not R Astron Soc 402:321–334. doi:10.1111/j.1365-2966.2009.15869.x. arXiv:0904.2657

  • Lemoine M, Kotera K, Pétri J (2014) On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds. arXiv:1409.0159

  • Lim B, Chun MY, Sung H, Park BG, Lee JJ, Sohn ST, Hur H, Bessell MS (2013) The starburst cluster Westerlund 1: the initial mass function and mass segregation. doi:10.1088/0004-6256/145/2/46. arXiv:1211.5832

  • Liu RY, Wang XY, Inoue S, Crocker R, Aharonian F (2014) Diffuse PeV neutrinos from EeV cosmic ray sources: semirelativistic hypernova remnants in star-forming galaxies. Phys Rev D 89(8):083004. doi:10.1103/PhysRevD.89.083004. arXiv:1310.1263

  • Lyne AG, Manchester RN, Taylor JH (1985) The galactic population of pulsars. Mon Not R Astron Soc 213:613–639

    ADS  Google Scholar 

  • Mac Low MM, McCray R (1988) Superbubbles in disk galaxies. Astrophys J 324:776–785. doi:10.1086/165936

    ADS  Google Scholar 

  • Mackey J, Langer N, Meyer DMA, Gvaramadze VV, Mohamed S, Neilson HR, Mignone A (2014) The circumstellar medium of massive stars in motion. arXiv:1406.0878

  • Maddox LA, Williams RM, Dunne BC, Chu YH (2009) Nonthermal X-ray emission in the N11 superbubble in the large magellanic cloud. Astrophys J 699:911–916. doi:10.1088/0004-637X/699/1/911. arXiv:0904.1821

  • Madura TI, Gull TR, Okazaki AT, Russell CMP, Owocki SP, Groh JH, Corcoran MF, Hamaguchi K, Teodoro M (2013) Constraints on decreases in \(\eta \) Carinae’s mass-loss from 3D hydrodynamic simulations of its binary colliding winds. Mon Not R Astron Soc 436:3820–3855. doi:10.1093/mnras/stt1871. arXiv:1310.0487

  • Maeder A, Meynet G (1988) Tables of evolutionary star models from 0.85 to 120 solar masses with overshooting and mass loss. Astron Astrophys Suppl 76:411–425

    ADS  Google Scholar 

  • Maeder A, Meynet G (2012) Rotating massive stars: from first stars to gamma ray bursts. Rev Mod Phys 84:25–63. doi:10.1103/RevModPhys.84.25

    ADS  Google Scholar 

  • Maeder A, Meynet G, Georgy C, Ekström S (2009) The basic role of magnetic fields in stellar evolution. In: Strassmeier KG, Kosovichev AG, Beckman JE (eds) IAU symposium, vol 259, pp 311–322. doi:10.1017/S1743921309030671. arXiv:0812.2764

  • Malkov MA (1997) Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys J 485:638. doi:10.1086/304471. arXiv:astro-ph/9707152

  • Malkov MA, Drury L (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Prog Phys 64:429–481. doi:10.1088/0034-4885/64/4/201

    ADS  Google Scholar 

  • Mannheim K, Elsässer D, Tibolla O (2012) Gamma-rays from pulsar wind nebulae in starburst galaxies. Astropart Phys 35:797–800. doi:10.1016/j.astropartphys.2012.02.009. arXiv:1010.2185

  • Marcowith A, Parizot E, van der Swaluw E, Bykov A, Tatischeff V, Ferrand G (2005) Superbubbles: a laboratory for high energy astrophysics and cosmic-ray physics. In: Aharonian FA, Völk HJ, Horns D (eds) High energy gamma-ray astronomy. American Institute of Physics conference series, vol 745, pp 287–292. doi:10.1063/1.1878418

  • Martin P (2014) Interstellar gamma-ray emission from cosmic rays in star-forming galaxies. Astron Astrophys 564:A61. doi:10.1051/0004-6361/201323329. arXiv:1402.0383

  • Massey P (1998) The initial mass function of massive stars in the local group. In: Gilmore G, Howell D (eds) The stellar initial mass function (38th Herstmonceux conference). Astronomical Society of the Pacific conference series, vol 142, p 17

  • Massey P, Hunter DA (1998) Star formation in R136: a cluster of O3 stars revealed by hubble space telescope spectroscopy. Astrophys J 493:180–194. doi:10.1086/305126

    ADS  Google Scholar 

  • Matthaeus WH, Velli M (2011) Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci Rev 160:145–168. doi:10.1007/s11214-011-9793-9

    ADS  Google Scholar 

  • McClure-Griffiths NM, Green JA, Hill AS, Lockman FJ, Dickey JM, Gaensler BM, Green AJ (2013) Atomic hydrogen in a galactic center outflow. Astrophys J Lett 770:L4. doi:10.1088/2041-8205/770/1/L4. arXiv:1304.7538

  • McCray R, Kafatos M (1987) Supershells and propagating star formation. Astrophys J 317:190–196. doi:10.1086/165267

    ADS  Google Scholar 

  • McKee CF, Ostriker EC (2007) Theory of star formation. Ann Rev Astron Astrophys 45:565–687. doi:10.1146/annurev.astro.45.051806.110602. arXiv:0707.3514

  • Mereghetti S (2008) The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron Astrophys Rev 15:225–287. doi:10.1007/s00159-008-0011-z. arXiv:0804.0250

  • Meylan G, Heggie DC (1997) Internal dynamics of globular clusters. Astron Astrophys Rev 8:1–143. doi:10.1007/s001590050008. arXiv:astro-ph/9610076

  • Molinari S, Bally J, Glover S, Moore T, Noriega-Crespo A, Plume R, Testi L, Vázquez-Semadeni E, Zavagno A, Bernard JP, Martin P (2014) The Milky Way as a star formation engine. arXiv:1402.6196

  • Montmerle T (1979) On gamma-ray sources, supernova remnants, OB associations, and the origin of cosmic rays. Astrophys J 231:95–110. doi:10.1086/157166

    ADS  Google Scholar 

  • Morris M, Serabyn E (1996) The galactic center environment. Ann Rev Astron Astrophys 34:645–702. doi:10.1146/annurev.astro.34.1.645

    ADS  Google Scholar 

  • Muno MP et al (2006a) A Neutron star with a massive progenitor in Westerlund 1. Astrophys J Lett 636:L41–L44. doi:10.1086/499776. arXiv:astro-ph/0509408

  • Muno MP, Law C, Clark JS, Dougherty SM, de Grijs R, Yusef-Zadeh F (2006b) Diffuse, nonthermal X-ray emission from the galactic star cluster Westerlund 1. Astrophys J 650:203–211. doi:10.1086/507175. arXiv:astro-ph/0606492

  • Muno MP et al (2009) A catalog of X-ray point sources from two megaseconds of Chandra observations of the galactic center. Astrophys J Suppl 181:110–128. doi:10.1088/0067-0049/181/1/110. arXiv:0809.1105

  • Norman CA, Ikeuchi S (1989) The disk-halo interaction—superbubbles and the structure of the interstellar medium. Astrophys J 345:372–383. doi:10.1086/167912

    ADS  Google Scholar 

  • Ohm S (2012) \(\gamma \)-rays from starburst galaxies. In: Aharonian FA, Hofmann W, Rieger FM (eds) American Institute of Physics Conference series, vol 1505, pp 64–71. doi:10.1063/1.4772221. arXiv:1210.6888

  • Ohm S, Hinton JA, White R (2013) \(\gamma \)-ray emission from the Westerlund 1 region. Mon Not R Astron Soc 434:2289–2294. doi:10.1093/mnras/stt1170. arXiv:1306.5642

  • Oka M, Phan TD, Krucker S, Fujimoto M, Shinohara I (2010) Electron acceleration by multi-island coalescence. Astrophys J 714:915–926. doi:10.1088/0004-637X/714/1/915. arXiv:1004.1154

  • Ong RA, for the VERITAS Collaboration (2013) Recent VERITAS results on VHE gamma-ray sources in Cygnus. arXiv:1307.5003

  • Oskinova LM (2005) Evolution of X-ray emission from young massive star clusters. Mon Not R Astron Soc 361:679–694. doi:10.1111/j.1365-2966.2005.09229.x. arXiv:astro-ph/0505512

  • Oskinova LM, Gruendl RA, Ignace R, Chu YH, Hamann WR, Feldmeier A (2010) Hard X-ray emission in the star-forming region ON 2: discovery with XMM-Newton. Astrophys J 712:763–777. doi:10.1088/0004-637X/712/2/763. arXiv:1001.4798

  • Owocki SP (2014) Instabilities in the envelopes and winds of very massive stars. arXiv:1403.6745

  • Owocki SP, Castor JI, Rybicki GB (1988) Time-dependent models of radiatively driven stellar winds. I—Nonlinear evolution of instabilities for a pure absorption model. Astrophys J 335:914–930. doi:10.1086/166977

    ADS  Google Scholar 

  • Parizot E, Marcowith A, van der Swaluw E, Bykov AM, Tatischeff V (2004) Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astron Astrophys 424:747–760. doi:10.1051/0004-6361:20041269. arXiv:astro-ph/0405531

  • Parkin ER, Pittard JM (2008) A 3D dynamical model of the colliding winds in binary systems. Mon Not R Astron Soc 388:1047–1061. doi:10.1111/j.1365-2966.2008.13511.x. arXiv:0805.4529

  • Pedlar A, Wills KA (2007) The Messier 82 starburst galaxy. In: Diffuse matter from star forming regions to active galaxies, p 307

  • Pelletier G (2001) Fermi acceleration of astroparticles. In: Lemoine M, Sigl G (eds) Physics and astrophysics of ultra-high-energy cosmic rays. Lecture notes in physics, vol 576. Springer, Berlin, p 58

  • Petrosian V, Bykov AM (2008) Particle acceleration mechanisms. Space Sci Rev 134:207–227. doi:10.1007/s11214-008-9315-6. arXiv:0801.0923

  • Pittard JM, Corcoran MF (2002) In hot pursuit of the hidden companion of eta Carinae: an X-ray determination of the wind parameters. Astron Astrophys 383:636–647. doi:10.1051/0004-6361:20020025. arXiv:astro-ph/0201105

  • Pittard JM, Dougherty SM (2006) Radio, X-ray, and \(\gamma \)-ray emission models of the colliding-wind binary WR140. Mon Not R Astron Soc 372:801–826. doi:10.1111/j.1365-2966.2006.10888.x. arXiv:astro-ph/0603787

  • Portegies Zwart SF, McMillan SLW, Gieles M (2010) Young massive star clusters. Ann Rev Astron Astrophys 48:431–493. doi:10.1146/annurev-astro-081309-130834. arXiv:1002.1961

  • Prantzos N (2012) On the origin and composition of Galactic cosmic rays. Astron Astrophys 538:A80. doi:10.1051/0004-6361/201117448. arXiv:1112.4343

  • Price DJ, Bate MR (2008) The effect of magnetic fields on star cluster formation. Mon Not R Astron Soc 385:1820–1834. doi:10.1111/j.1365-2966.2008.12976.x. arXiv:0801.3293

  • Price DJ, Bate MR (2009) Inefficient star formation: the combined effects of magnetic fields and radiative feedback. Mon Not R Astron Soc 398:33–46. doi:10.1111/j.1365-2966.2009.14969.x. arXiv:0904.4071

  • Pritchett PL (2006) Relativistic electron production during guide field magnetic reconnection. J Geophys Res (Space Phys) 111:A10212. doi:10.1029/2006JA011793

    ADS  Google Scholar 

  • Ptuskin VS, Zirakashvili VN (2005) On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation. Astron Astrophys 429:755–765. doi:10.1051/0004-6361:20041517. arXiv:astro-ph/0408025

  • Ptuskin V, Zirakashvili V, Seo ES (2010) Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys J 718:31–36. doi:10.1088/0004-637X/718/1/31. arXiv:1006.0034

  • Puls J, Vink JS, Najarro F (2008) Mass loss from hot massive stars. Astron Astrophys Rev 16:209–325. doi:10.1007/s00159-008-0015-8. arXiv:0811.0487

  • Ramaty R, Lingenfelter RE, Kozlovsky B (2001) Spallogenic light elements and cosmic-ray origin. Space Sci Rev 99:51–60

    ADS  Google Scholar 

  • Rampadarath H, Morgan JS, Lenc E, Tingay SJ (2014) Multi-epoch very long baseline interferometric observations of the nuclear starburst region of NGC 253: improved modeling of the supernova and star formation rates. Astronom J 147:5. doi:10.1088/0004-6256/147/1/5. arXiv:1310.8033

  • Renaud F, Bournaud F, Kraljic K, Duc PA (2014) Starbursts triggered by intergalactic tides and interstellar compressive turbulence. Mon Not R Astron Soc 442:L33–L37. doi:10.1093/mnrasl/slu050. arXiv:1403.7316

  • Ressler SM, Katsuda S, Reynolds SP, Long KS, Petre R, Williams BJ, Winkler PF (2014) Magnetic-field amplification in the thin X-ray rims of SN1006. Astrophys J 790(2):1–16

  • Reville B, Kirk JG, Duffy P (2009) Steady-state solutions in nonlinear diffusive shock acceleration. Astrophys J 694:951–958. doi:10.1088/0004-637X/694/2/951. arXiv:0812.3993

  • Revnivtsev MG, Churazov EM, Sazonov SY, Sunyaev RA, Lutovinov AA, Gilfanov MR, Vikhlinin AA, Shtykovsky PE, Pavlinsky MN (2004) Hard X-ray view of the past activity of Sgr A* in a natural Compton mirror. Astron Astrophys 425:L49–L52. doi:10.1051/0004-6361:200400064. arXiv:astro-ph/0408190

  • Revnivtsev M, Sazonov S, Churazov E, Forman W, Vikhlinin A, Sunyaev R (2009) Discrete sources as the origin of the Galactic X-ray ridge emission. Nature 458:1142–1144. doi:10.1038/nature07946. arXiv:0904.4649

  • Reynolds SP, Gaensler BM, Bocchino F (2012) Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci Rev 166:231–261. doi:10.1007/s11214-011-9775-y. arXiv:1104.4047

  • Rockefeller G, Fryer CL, Melia F, Wang QD (2005) Diffuse X-rays from the arches and quintuplet clusters. Astrophys J 623:171–180. doi:10.1086/428605. arXiv:astro-ph/0409704

  • Rogers H, Pittard JM (2013) Feedback from winds and supernovae in massive stellar clusters—I. Hydrodynamics. Mon Not R Astron Soc 431:1337–1351. doi:10.1093/mnras/stt255. arXiv:1302.2443

  • Rogers H, Pittard JM (2014) Feedback from winds and supernovae in massive stellar clusters—II. X-ray emission. MNRAS 441(2):964–982

  • Rosenberg MJF, van der Werf PP, Israel FP (2012) [FeII] as a tracer of supernova rate in nearby starburst galaxies. Astron Astrophys 540:A116. doi:10.1051/0004-6361/201218772. arXiv:1202.2713

  • Sagdeev RZ (1966) Cooperative phenomena and shock waves in collisionless plasmas. Rev Plasma Phys 4:23

    ADS  Google Scholar 

  • Sakamoto K, Wang J, Wiedner MC, Wang Z, Peck AB, Zhang Q, Petitpas GR, Ho PTP, Wilner DJ (2008) Submillimeter array imaging of the CO(3–2) Line and 860 \(\mu \)m continuum of Arp 220: tracing the spatial distribution of luminosity. Astrophys J 684:957–977. doi:10.1086/590484. arXiv:0806.0217

  • Salem M, Bryan GL (2014) Cosmic ray driven outflows in global galaxy disc models. Mon Not R Astron Soc 437:3312–3330. doi:10.1093/mnras/stt2121

    ADS  Google Scholar 

  • Salpeter EE (1955) The luminosity function and stellar evolution. Astrophys J 121:161. doi:10.1086/145971

    ADS  Google Scholar 

  • Sanchez Almeida J, Elmegreen BG, Munoz-Tunon C, Elmegreen DM (2014) Star formation sustained by gas accretion. arXiv:1405.3178

  • Scalo JM (1986) The stellar initial mass function. Fundam Cosm Phys 11:1–278

    ADS  Google Scholar 

  • Schekochihin AA, Cowley SC, Dorland W, Hammett GW, Howes GG, Quataert E, Tatsuno T (2009) Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys J Suppl 182:310–377. doi:10.1088/0067-0049/182/1/310. arXiv:0704.0044

  • Schleicher DRG, Beck R (2013) A new interpretation of the far-infrared—radio correlation and the expected breakdown at high redshift. Astron Astrophys 556:A142. doi:10.1051/0004-6361/201321707. arXiv:1306.6652

  • Schneider FRN, Izzard RG, de Mink SE, Langer N, Stolte A, de Koter A, Gvaramadze VV, Hußmann B, Liermann A, Sana H (2014) Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: analyzing age-dependent stellar mass functions. Astrophys J 780:117. doi:10.1088/0004-637X/780/2/117. arXiv:1312.0607

  • Schure KM, Bell AR, O’C Drury L, Bykov AM (2012) Diffusive shock acceleration and magnetic field amplification. Space Sci Rev. doi:10.1007/s11214-012-9871-7. arXiv:1203.1637

  • Servidio S, Dmitruk P, Greco A, Wan M, Donato S, Cassak PA, Shay MA, Carbone V, Matthaeus WH (2011) Magnetic reconnection as an element of turbulence. Nonlinear Process Geophys 18:675–695. doi:10.5194/npg-18-675-2011

    ADS  Google Scholar 

  • Siejkowski H, Otmianowska-Mazur K, Soida M, Bomans DJ, Hanasz M (2014) 3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies. Astron Astrophys 562:A136. doi:10.1051/0004-6361/201220367. arXiv:1401.5293

  • Sironi L, Spitkovsky A (2012) Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds. Comput Sci Discov 5(1):014014. doi:10.1088/1749-4699/5/1/014014. arXiv:1208.4998

  • Smith HE, Lonsdale CJ, Lonsdale CJ, Diamond PJ (1998) A starburst revealed-luminous radio supernovae in the nuclei of ARP 220. Astrophys J Lett 493:L17–L21. doi:10.1086/311122

    ADS  Google Scholar 

  • Socrates A, Davis SW, Ramirez-Ruiz E (2008) The eddington limit in cosmic rays: an explanation for the observed faintness of starbursting galaxies. Astrophys J 687:202–215. doi:10.1086/590046. arXiv:astro-ph/0609796

  • Stevens IR, Blondin JM, Pollock AMT (1992) Colliding winds from early-type stars in binary systems. Astrophys J 386:265–287. doi:10.1086/171013

    ADS  Google Scholar 

  • Strong AW, Moskalenko IV, Ptuskin VS (2007) Cosmic-ray propagation and interactions in the galaxy. Annu Rev Nucl Part Sci 57:285–327. doi:10.1146/annurev.nucl.57.090506.123011. arXiv:astro-ph/0701517

  • Su M, Slatyer TR, Finkbeiner DP (2010) Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astrophys J 724:1044–1082. doi:10.1088/0004-637X/724/2/1044. arXiv:1005.5480

  • Sunyaev R, Churazov E (1998) Equivalent width, shape and proper motion of the iron fluorescent line emission from molecular clouds as an indicator of the illuminating source X-ray flux history. Mon Not R Astron Soc 297:1279–1291. doi:10.1046/j.1365-8711.1998.01684.x. arXiv:astro-ph/9805038

  • Sunyaev RA, Markevitch M, Pavlinsky M (1993) The center of the Galaxy in the recent past—a view from GRANAT. Astrophys J 407:606–610. doi:10.1086/172542

    ADS  Google Scholar 

  • Tamborra I, Ando S, Murase K (2014) Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history. J Cosmol Astropart Phys 09:043. arXiv:astro-ph/1404.1189

  • Tan JC, Beltran MT, Caselli P, Fontani F, Fuente A, Krumholz MR, McKee CF, Stolte A (2014) Massive star formation. arXiv:1402.0919

  • Tananbaum H, Weisskopf M, Tucker W, Wilkes B, Edmonds P (2014) Highlights and discoveries from the Chandra X-ray observatory. Rep Prog Phys 77(6):066902

  • Tatischeff V, Decourchelle A, Maurin G (2012) Nonthermal X-rays from low-energy cosmic rays: application to the 6.4 keV line emission from the Arches cluster region. Astron Astrophys 546:A88. doi:10.1051/0004-6361/201219016. arXiv:1210.2108

  • Tavani M et al (2009) Detection of gamma-ray emission from the eta-carinae region. Astrophys J Lett 698:L142–L146. doi:10.1088/0004-637X/698/2/L142. arXiv:0904.2736

  • Terrier R, Ponti G, Bélanger G, Decourchelle A, Tatischeff V, Goldwurm A, Trap G, Morris MR, Warwick R (2010) Fading hard X-ray emission from the galactic center molecular cloud Sgr B2. Astrophys J 719:143–150. doi:10.1088/0004-637X/719/1/143. arXiv:1005.4807

  • The ARGO-YBJ Collaboration, Bartoli B et al (2014) Identification of the TeV gamma-ray source ARGO J2031+4157 with the Cygnus cocoon. Astrophys J 790(2):1–5

  • Thompson MA, Urquhart JS, Moore TJT, Morgan LK (2012) The statistics of triggered star formation: an overdensity of massive young stellar objects around Spitzer bubbles. Mon Not R Astron Soc 421:408–418. doi:10.1111/j.1365-2966.2011.20315.x. arXiv:1111.0972

  • Tidman DA, Krall NA (1971) Shock waves in collisionless plasmas. Wiley-Interscience, New York

  • Toptygin IN (1985) Cosmic rays in interplanetary magnetic fields. D. Reidel Publishing Co, Dordrecht

    Google Scholar 

  • Torres DF, Reimer O (eds) (2013) Cosmic rays in star-forming environments. Adv Solid State Phys 34. doi:10.1007/978-3-642-35410-6

  • Treumann RA (2009) Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron Astrophys Rev 17:409–535. doi:10.1007/s00159-009-0024-2

    ADS  Google Scholar 

  • Tu CY, Marsch E (1995) MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci Rev 73:1–210. doi:10.1007/BF00748891

    ADS  Google Scholar 

  • Tutukov AV (1978) Early stages of dynamical evolution of star cluster models. Astron Astrophys 70:57

    ADS  Google Scholar 

  • Uchiyama Y, Aharonian FA, Tanaka T, Takahashi T, Maeda Y (2007) Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449:576–578. doi:10.1038/nature06210

    ADS  Google Scholar 

  • Unger SW, Pedlar A, Axon DJ, Wilkinson PN, Appleton PN (1984) Young supernovae in the starburst galaxy M82. Mon Not R Astron Soc 211:783–792

    ADS  Google Scholar 

  • Valinia A, Tatischeff V, Arnaud K, Ebisawa K, Ramaty R (2000) On the origin of the iron K line in the spectrum of the galactic X-ray background. Astrophys J 543:733–739. doi:10.1086/317133. arXiv:astro-ph/0006202

  • van Marle AJ, Meliani Z, Marcowith A (2012) A hydrodynamical model of the circumstellar bubble created by two massive stars. Astron Astrophys 541:L8. doi:10.1051/0004-6361/201219180. arXiv:1204.2078

  • Veilleux S, Cecil G, Bland-Hawthorn J (2005) Galactic winds. Ann Rev Astron Astrophys 43:769–826. doi:10.1146/annurev.astro.43.072103.150610. arXiv:astro-ph/0504435

  • Velázquez PF, Koenigsberger G, Raga AC (2003) A supernova remnant collision with a stellar wind. Astrophys J 584:284–292. doi:10.1086/345663. arXiv:astro-ph/0211491

  • Vink J (2012) Supernova remnants: the X-ray perspective. Astron Astrophys Rev 20:49. doi:10.1007/s00159-011-0049-1. arXiv:1112.0576

  • Vink J, Kuiper L (2006) Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars. Mon Not R Astron Soc 370:L14–L18. doi:10.1111/j.1745-3933.2006.00178.x. arXiv:astro-ph/0604187

  • Vink JS, de Koter A, Lamers HJGLM (2000) New theoretical mass-loss rates of O and B stars. Astron Astrophys 362:295–309. arXiv:astro-ph/0008183

  • Vink JS, de Koter A, Lamers HJGLM (2001) Mass-loss predictions for O and B stars as a function of metallicity. Astron Astrophys 369:574–588. doi:10.1051/0004-6361:20010127. arXiv:astro-ph/0101509

  • Voelk HJ (1989) The correlation between radio and far-infrared emission for disk galaxies—a calorimeter theory. Astron Astrophys 218:67–70

    ADS  Google Scholar 

  • Voelk HJ, Biermann PL (1988) Maximum energy of cosmic-ray particles accelerated by supernova remnant shocks in stellar wind cavities. Astrophys J Lett 333:L65–L68. doi:10.1086/185289

    ADS  Google Scholar 

  • Walder R, Folini D, Meynet G (2012) Magnetic fields in massive stars, their winds, and their nebulae. Space Sci Rev 166:145–185. doi:10.1007/s11214-011-9771-2. arXiv:1103.3777

  • Wang QD (2014) Supernovae and the galactic ecosystem. In: Ray A, McCray RA (eds) IAU symposium, vol 296, pp 273–281. doi:10.1017/S1743921313009587

  • Wang QD, Dong H, Lang C (2006) The interplay between star formation and the nuclear environment of our Galaxy: deep X-ray observations of the Galactic centre Arches and Quintuplet clusters. Mon Not R Astron Soc 371:38–54. doi:10.1111/j.1365-2966.2006.10656.x. arXiv:astro-ph/0606282

  • Weaver R, McCray R, Castor J, Shapiro P, Moore R (1977) Interstellar bubbles. II–Structure and evolution. Astrophys J 218:377–395. doi:10.1086/155692

    ADS  Google Scholar 

  • Weidner C, Bonnell IA, Zinnecker H (2010a) Super star clusters versus OB associations. Astrophys J 724:1503–1508. doi:10.1088/0004-637X/724/2/1503. arXiv:1009.1618

  • Weidner C, Kroupa P, Bonnell IAD (2010b) The relation between the most-massive star and its parental star cluster mass. Mon Not R Astron Soc 401:275–293. doi:10.1111/j.1365-2966.2009.15633.x. arXiv:0909.1555

  • Weidner C, Kroupa P, Pflamm-Altenburg J (2011) Top-heavy integrated galactic stellar initial mass functions in starbursts. Mon Not R Astron Soc 412:979–986. doi:10.1111/j.1365-2966.2010.17959.x. arXiv:1011.3814

  • Weidner C, Kroupa P, Pflamm-Altenburg J (2014) Sampling methods for stellar masses and the mmax-Mecl relation in the starburst dwarf galaxy NGC 4214. MNRAS 441(4):3348–3358

  • Werner M, Reimer O, Reimer A, Egberts K (2013) Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries. Astron Astrophys 555:A102. doi:10.1051/0004-6361/201220502. arXiv:1308.2573

  • Whitmore BC, Schweizer F (1995) Hubble space telescope observations of young star clusters in NGC-4038/4039, ‘the antennae’ galaxies. Astron J 109:960–980. doi:10.1086/117334

    ADS  Google Scholar 

  • Whitmore BC, Chandar R, Schweizer F, Rothberg B, Leitherer C, Rieke M, Rieke G, Blair WP, Mengel S, Alonso-Herrero A (2010) The antennae galaxies (NGC 4038/4039) revisited: advanced camera for surveys and NICMOS observations of a prototypical merger. Astronom J 140:75–109. doi:10.1088/0004-6256/140/1/75. arXiv:1005.0629

  • Winske D, Quest KB (1988) Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J Geophys Res 93:9681–9693. doi:10.1029/JA093iA09p09681

    ADS  Google Scholar 

  • Winske D, Thomas VA, Omidi N, Quest KB (1990) Re-forming supercritical quasi-parallel shocks. II–Mechanism for wave generation and front re-formation. J Geophys Res 95:18821–18832. doi:10.1029/JA095iA11p18821

    ADS  Google Scholar 

  • Wright NJ, Parker RJ, Goodwin SP, Drake JJ (2014) Constraints on massive star formation: Cygnus OB2 was always an association. Mon Not R Astron Soc 438:639–646. doi:10.1093/mnras/stt2232. arXiv:1311.4537

  • Wu EMH, Hui CY, Kong AKH, Tam PHT, Cheng KS, Dogiel VA (2014) Chandra detection of a new diffuse X-ray component from the globular cluster 47 Tucanae. Astrophys J Lett 788(2):L40. http://stacks.iop.org/2041-8205/788/i=2/a=L40. arXiv:1405.5481

  • Yoast-Hull TM, Gallagher JS III, Zweibel EG, Everett JE (2014) Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068. Astrophys J 780:137. doi:10.1088/0004-637X/780/2/137. arXiv:1311.5586

  • Yusef-Zadeh F (2003) The origin of the galactic center nonthermal radio filaments: young stellar clusters. Astrophys J 598:325–333. doi:10.1086/378715. arXiv:astro-ph/0308008

  • Yusef-Zadeh F, Wardle M, Lis D, Viti S, Brogan C, Chambers E, Pound M, Rickert M (2013) 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center. J Phys Chem A 117:9404–9419. doi:10.1021/jp311240h. arXiv:1305.1047

  • Zelenyi LM, Lominadze JG, Taktakishvili AL (1990) Generation of the energetic proton and electron bursts in planetary magnetotails. J Geophys Res 95:3883–3891. doi:10.1029/JA095iA04p03883

    ADS  Google Scholar 

  • Zhang M, Lee MA (2013) Stochastic acceleration of energetic particles in the heliosphere. Space Sci Rev 176:133–146. doi:10.1007/s11214-011-9754-3

    ADS  Google Scholar 

  • Zharkova VV et al (2011) Recent advances in understanding particle acceleration processes in solar flares. Space Sci Rev 159:357–420. doi:10.1007/s11214-011-9803-y. arXiv:1110.2359

  • Zimbardo G, Perri S (2013) From Lévy walks to superdiffusive shock acceleration. Astrophys J 778:35. doi:10.1088/0004-637X/778/1/35

    ADS  Google Scholar 

  • Zinnecker H, Yorke HW (2007) Toward understanding massive star formation. Ann Rev Astron Astrophys 45:481–563. doi:10.1146/annurev.astro.44.051905.092549. arXiv:0707.1279

  • Zweibel EG (2003) Cosmic-ray history and its implications for galactic magnetic fields. Astrophys J 587:625–637. doi:10.1086/368256. arXiv:astro-ph/0212559

  • Zweibel E (2013) Astrophysics: recipe for regularity. Nature 502:453–454. doi:10.1038/502453a

    ADS  Google Scholar 

  • Zweibel EG, Everett JE (2010) Environments for magnetic field amplification by cosmic rays. Astrophys J 709:1412–1419. doi:10.1088/0004-637X/709/2/1412. arXiv:0912.3511

  • Zweibel EG, Yamada M (2009) Magnetic reconnection in astrophysical and laboratory plasmas. Ann Rev Astron Astrophys 47:291–332. doi:10.1146/annurev-astro-082708-101726

    ADS  Google Scholar 

Download references

Acknowledgments

The invitation to this review by T. Courvoisier is deeply acknowledged. The author benefited from his collaborations with A. Artemyev, C. Georgy, I. Grenier, D. C. Ellison, G. Fleishman, P. Gladilin, M. Gustov, A. Marcowith, K. P. Levenfish, D. Folini, S. Osipov, E. Parizot, Yu. Uvarov, R. Walder. Special thanks are due to I. N. Toptygin and A. M. Krassilchtchikov for their help at various stages of my work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei M. Bykov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.M. Nonthermal particles and photons in starburst regions and superbubbles. Astron Astrophys Rev 22, 77 (2014). https://doi.org/10.1007/s00159-014-0077-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-014-0077-8

Keywords

Navigation