Skip to main content
Log in

Synthesis of Co3O4@SiO2 Core/Shell–Nylon 6 Magnetic Nanocomposite as an Adsorbent for Removal of Congo Red from Wastewater

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, a Co3O4@SiO2 core–shell magnetic nanoparticle-nylon-6 (CSMN6) was synthesized for the first time and used for the elimination of Congo red dye from wastewater samples. The morphology and the structure of the prepared CSMN6 were studied completely and its adsorption behavior vs. Congo red dye has been investigated. The sorption performance was evaluated using batch studies at room temperature, at varying operating conditions such as solution pH, sorbent dosage, initial dye concentration and contact time. It has been found that the Elovich kinetics model and Langmuir isotherm can describe this process adequately and a maximum adsorption rate of 138.9 mg g−1 is obtained which may be illustrated by homogeneous physical and chemical adsorption of Congo red on the surface of the adsorbent. Through this process of adsorption with the adsorbent dose of 1.4 g l−1, more than 86% of the Congo red dye from a solution with the concentration of 50 mg L−1 was eliminated. The saturation magnetization of CSMN6 was 7.8 emu g−1 and shows paramagnetic properties and could be isolated from the environment using an exterior magnet. The higher temperature was more suitable for the elimination of the Congo red dye. Also, intraparticle rate constant computed for Congo red was 4.87 mg g−1 min−1/2 that indicates higher tendency of CSMN6 to remove Congo red from aqueous solutions. The used CSMN6 can be recovered simply by using ethanol and utilized again for eliminating Congo red dye from contaminated water. In these reusing processes, a high yield of 76% may be obtained up to 5 recovery cycles. These results demonstrate that CSMN6 is a considerable candidate for water treatment processes with high effective and repeatable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Yang, Y. Li, H. Gao, C. Wang, X. Zhang, H. Zhou, One-step fabrication of chitosan-Fe (OH) 3 beads for efficient adsorption of anionic dyes. Int. J. Biol. Macromol. 117, 30–41 (2018)

    CAS  Google Scholar 

  2. W. Dong, Y. Lu, W. Wang, L. Zong, Y. Zhu, Y. Kang, A. Wang, A new route to fabricate high-efficient porous silicate adsorbents by simultaneous inorganic-organic functionalization of low-grade palygorskite clay for removal of Congo red. Microporous Mesoporous Mater. 277, 267–276 (2019)

    CAS  Google Scholar 

  3. M. Jourvand, G. Shams Khorramabadi, Y. Omidi Khaniabadi, H. Godini, H. Nourmoradi, Removal of methylene blue from aqueous solutions using modified clay. J. Basic Res. Med. Sci. 2, 32–41 (2015)

    Google Scholar 

  4. S. Chawla, H. Uppal, M. Yadav, N. Bahadur, N. Singh, Zinc peroxide nanomaterial as an adsorbent for removal of congo red dye from water. Ecotox. Environ. Saf. 135, 68–74 (2017)

    CAS  Google Scholar 

  5. R. Rahimi, H. Kerdari, M. Rabbani, M. Shafiee, Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on the removal of congo red from aqueous solution. Desalination 280, 412–418 (2011)

    CAS  Google Scholar 

  6. K. Rani, A. Naik, R.S. Chaurasiya, K. Raghavarao, Removal of toxic congo red dye from water employing low-cost coconut residual fiber. Water Sci. Technol. 75, 2225–2236 (2017)

    CAS  PubMed  Google Scholar 

  7. G.A. Kloster, M.A. Mosiewicki, N.E. Marcovich, Chitosan/iron oxide nanocomposite films: Effect of the composition and preparation methods on the adsorption of congo red. Carbohyd. Polym. 221, 186–194 (2019)

    CAS  Google Scholar 

  8. A. Seidmohammadi, G. Asgari, M. Leili, A. Dargahi, A. Mobarakian, Effectiveness of quercus branti activated carbon in removal of methylene blue from aqueous solutions. Arch. Hyg. Sci. 4, 217–225 (2015)

    Google Scholar 

  9. Y. Bao, M. Qin, Y. Yu, L. Zhang, H. Wu, Facile fabrication of porous NiCo2O4 nanosheets with high adsorption performance toward Congo red. J. Phys. Chem. Solids 124, 289–295 (2019)

    CAS  Google Scholar 

  10. S. Madan, R. Shaw, S. Tiwari, S.K. Tiwari, Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Appl. Surf. Sci. 487, 907–917 (2019)

    CAS  Google Scholar 

  11. X. Quan, Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, X. Zhang, Polyethyleneimine (PEI) incorporated Cu-BTC composites: extended applications in ultra-high efficient removal of congo red. J. Solid State Chem. 270, 231–241 (2019)

    CAS  Google Scholar 

  12. H. Hu, J. Liu, Z. Xu, L. Zhang, B. Cheng, W. Ho, Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Appl. Surf. Sci. 478, 981–990 (2019)

    CAS  Google Scholar 

  13. S. Rahpeima, V. Javanbakht, J. Esmaili, Synthesis and characterization of activated carbon/maghemite/starch magnetic bionanocomposite and its application for permanganate removal from aqueous solution. J. Inorg. Organomet. Polym. 28, 195–211 (2018)

    CAS  Google Scholar 

  14. H. Wang, Y. Lin, Y. Li, A. Dolgormaa, H. Fang, L. Guo, J. Huang, J. Yang, A novel magnetic Cd(II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution. J. Inorg. Organomet. Polym. 29, 1874–1885 (2019)

    CAS  Google Scholar 

  15. M. Adibmehr, H. Faghihian, Magnetized activated carbon prepared by oak shell biowaste and modified with nickel hexacyanoferrate for selective removal of cesium. J. Inorg. Organomet. Polym. 29, 1941–1955 (2019)

    CAS  Google Scholar 

  16. S. Krishna Lakkaboyana, S. Khantong, N.K. Asmel, A. Yuzir, W.Z. Wan Yaacob, Synthesis of copper oxide nanowires-activated carbon (AC@CuO-NWs) and applied for removal methylene blue from aqueous solution: kinetics, isotherms, and thermodynamics. J. Inorg. Organomet. Polym. 29, 1658–1668 (2019)

    Google Scholar 

  17. V. Suba, G. Rathika, E. Ranjith Kumar, M. Saravanabhavan, V. Nayak Badavath, K.S. Thangamani, Enhanced adsorption and antimicrobial activity of fabricated apocynaceae leaf waste activated carbon by cobalt ferrite nanoparticles for textile effluent treatment. J. Inorg. Organomet. Polym. 29, 550–563 (2019)

    CAS  Google Scholar 

  18. Z. Cheng, Z. Gao, W. Ma, Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions. Chem. Eng. J. 209, 451–457 (2012)

    CAS  Google Scholar 

  19. T. Etemadinia, B. Barikbin, A. Allahresani, Removal of Congo red dye from aqueous solutions using ZnFe2O4/SiO2/Tragacanth gum magnetic nanocomposite as a novel adsorbent. Surf. Interface 14, 117–126 (2019)

    CAS  Google Scholar 

  20. R. Ravi, S. Iqbal, A. Ghosal, S. Ahmad, Novel mesoporous trimetallic strontium magnesium ferrite (Sr0.3Mg0.7Fe2O4) nanocubes: a selective and recoverable magnetic nanoadsorbent for Congo red. J. Alloys Compd. 791, 336–347 (2019)

    CAS  Google Scholar 

  21. Q. Wang, A. Tang, L. Zhong, X. Wen, P. Yan, J. Wang, Amino-modified γ-Fe2O3/sepiolite composite with rod-like morphology for magnetic separation removal of Congo red dye from aqueous solution. Powder Technol. 339, 872–881 (2018)

    CAS  Google Scholar 

  22. J. Liu, N. Wang, H. Zhang, J. Baeyens, Adsorption of Congo red dye on FexCo3-xO4 nanoparticles. J. Environ. Manag. 238, 473–483 (2019)

    Google Scholar 

  23. J.K. Sahoo, S.K. Paikra, M. Mishra, H. Sahoo, Amine functionalized magnetic iron oxide nanoparticles: synthesis, antibacterial activity and rapid removal of Congo red dye. J. Mol. Liq. 282, 428–440 (2019)

    CAS  Google Scholar 

  24. L. You, C. Huang, F. Lu, A. Wang, X. Liu, Q. Zhang, Facile synthesis of high performance porous magnetic chitosan polyethylenimine polymer composite for Congo red removal. Int. J. Biol. Macromol. 107, 1620–1628 (2018)

    CAS  PubMed  Google Scholar 

  25. E. Saksornchai, J. Kavinchan, S. Thongtem, T. Thongtem, Simple wet-chemical synthesis of superparamagnetic CTAB-modified magnetite nanoparticles using as an adsorbent for anionic Congo red dye treatment. Mater. Lett. 213, 138–142 (2017)

    Google Scholar 

  26. W. Huang, J. Xu, D. Lu, J. Deng, G. Shi, T. Zhou, Rational design of magnetic infinite coordination polymer core-shell nanoparticles as recyclable adsorbents for selective removal of anionic dyes from colored wastewater. Appl. Surf. Sci. 462, 453–465 (2018)

    CAS  Google Scholar 

  27. G. Pandey, S. Singh, G. Hitkari, Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. Int. Nano Lett. 8, 111–121 (2018)

    CAS  Google Scholar 

  28. N. Belachew, G. Bekele, Synergy of magnetite intercalated bentonite for enhanced adsorption of congo red dye. Silicon (2019). https://doi.org/10.1007/s12633-019-00152-2

    Article  Google Scholar 

  29. H. Song, S. You, X. Jia, A facile in situ reduction method for the preparation of magnetic Ni/MoS2 nanocomposites and their adsorption behaviors of Congo red. J. Mater. Sci.: Mater Electron. 27, 10841–10848 (2016)

    CAS  Google Scholar 

  30. F. Zhang, X. Tang, J. Lan, Y. Huang, Successive removal of Pb2+ and Congo red by magnetic phosphate nanocomposites from aqueous solution. Sci. Total Environ. 658, 1139–1149 (2018)

    PubMed  Google Scholar 

  31. Y. Zhang, L. Bai, W. Zhou, R. Lu, H. Gao, S. Zhang, Superior adsorption capacity of Fe3O4@nSiO2@mSiO2 core-shell microspheres for removal of congo red from aqueous solution. J. Mol. Liq. 219, 88–94 (2016)

    CAS  Google Scholar 

  32. Q. Yang, H. Song, Y. Li, Z. Pan, M. Dong, F. Chen, Z. Chen, Flower-like core-shell Fe3O4@MnO2 microspheres: synthesis and selective removal of Congo red dye from aqueous solution. J. Mol. Liq. 234, 18–23 (2017)

    CAS  Google Scholar 

  33. A.M. El-Toni, M.A. Habila, J. Puzon Labis, Z.A. Alothman, M. Alhoshan, A.A. Elzatahry, F. Zhang, Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 8, 2510–2531 (2016)

    CAS  PubMed  Google Scholar 

  34. X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, T. Zhai, Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410–417 (2017)

    CAS  Google Scholar 

  35. N. Joshi, L.F. da Silva, H.S. Jadhav, F.M. Shimizu, P.H. Suman, J.-C. Meko, M. Ornaghi Orlandi, J. GilSeo, V.R. Mastelaro, O.N. Oliveira Jr., Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sens Actuators B 257, 906–915 (2018)

    CAS  Google Scholar 

  36. P. Jiang, Q. Wang, J. Dai, W. Li, Z. Wei, Fabrication of NiO@Co3O4 core/shell nanofibres for high-performance supercapacitors. Mater. Lett. 188, 69–72 (2017)

    CAS  Google Scholar 

  37. S. Kandula, P. Jeevanandam, A facile synthetic approach for SiO2@Co3O4 core–shell nanorattles with enhanced peroxidase-like activity. RSC Adv. 5, 5295–5306 (2015)

    CAS  Google Scholar 

  38. J. Zhou, C. Tang, B. Cheng, J. Yu, M. Jaroniec, Rattle-type carbon-alumina core-shell spheres: synthesis and application for adsorption of organic dyes. ACS Appl. Mater. Interfaces 4, 2174–2179 (2012)

    CAS  PubMed  Google Scholar 

  39. T. Li, C. Yang, X. Rao, F. Xiao, J. Wang, X. Su, Synthesis of magnetically recyclable Fe3O4@NiO nanostructures for styrene epoxidation and adsorption application. Ceram. Int. 41, 2214–2220 (2015)

    CAS  Google Scholar 

  40. A. Belalia, A. Zehhaf, A. Benyoucef, Preparation of hybrid material Based of PANI with SiO2 and Its Adsorption of Phenol from Aqueous Solution. Polym. Sci. Ser. B 60, 816–824 (2018)

    CAS  Google Scholar 

  41. W.-C. Chien, Y.-Y. Yu, P.-K. Chen, H.-H. Yu, Microwave-assisted synthesis and characterization of poly(acrylic)/SiO2–TiO2 core–shell nanoparticle hybrid thin films. Thin Solid Films 519, 5274–5279 (2011)

    CAS  Google Scholar 

  42. S.Z. Mohammadi, A. Seyedi, Preconcentration of cadmium and copper ions on magnetic core–shell nanoparticles for determination by flame atomic absorption. Environ. Toxicol. Chem. 98, 705–713 (2015)

    Google Scholar 

  43. N.M. Mahmoodi, Synthesis of core–shell magnetic adsorbent nanoparticle and selectivity analysis for binary system dye removal. J. Indust. Eng. Chem. 20, 2050–2058 (2014)

    CAS  Google Scholar 

  44. T. Hu, Y. Wang, L. Zhang, T. Tang, H. Xiao, W. Chen, M. Zhao, J. Jia, H. Zhu, Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst. Appl. Catal. B 243, 175–182 (2019)

    CAS  Google Scholar 

  45. A. Din, K. Akhtar, KhS Karimov, N. Fatima, A.M. Asiri, M.I. Khan, S. Bahadar Khan, Fe2O3-Co3O4 nanocomposites based humidity and temperature sensors. J. Mol. Liq. 237, 266–271 (2017)

    CAS  Google Scholar 

  46. Q. Xu, X. Yin, S. Wu, M. Wang, Z. Wen, Z. Gu, Determination of phthalate esters in water samples using Nylon 6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Microchim. Acta 168, 267–275 (2010)

    CAS  Google Scholar 

  47. E.M. Reyes-Gallardo, R. Lucena, S. Cardenas, M. Valcarcel, Dispersive solid phase extraction of bisphenol A from milk using magnetic nylon 6 composite and its final determination by HPLC-UV. Microchem. J. 124, 751–756 (2016)

    CAS  Google Scholar 

  48. J. Han, S. Meng, Y. Dong, J. Hu, W. Gao, Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes. Water Res. 47, 197–208 (2013)

    CAS  PubMed  Google Scholar 

  49. Z. Mehrani, H. Ebrahimzadeh, E. Moradi, Poly m-aminophenol/nylon 6/graphene oxide electrospun nanofiber as an efficient sorbent for thin film microextraction of phthalate esters in water and milk solutions preserved in baby bottle. J. Chromatogr. A 1600, 87–94 (2019)

    CAS  PubMed  Google Scholar 

  50. P. Amirifard, M.A. Taher, M. Naghizadeh, Preconcentration of Pd ion in novel modified magnetic graphene oxide nanoparticles in different samples and its determination by ETAAS. Environ. Nanotechnol. Monit. Manage. 10, 140–147 (2018)

    Google Scholar 

  51. A. Moslemizadeh, S. Khezerloo-ye Aghdam, K. Shahbazi, H. Khezerloo-ye Aghdam, F. Alboghobeish, Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase. Appl. Clay Sci. 127, 111–122 (2016)

    Google Scholar 

  52. G.D. Cunha, B.T. dos Santos, J.R. Alves, I.A. Silva, D.R. de Souza Cruz, L.P. Romão, Applications of magnetic hybrid adsorbent derived from waste biomass for the removal of metal ions and reduction of 4-nitrophenol. J. Environ. Manag. 213, 236–246 (2018)

    CAS  Google Scholar 

  53. S.Z. Mohammadi, M.A. Karimi, N. Mofidinasab, Rapid preconcentration of palladium and rhodium using magnetic graphene oxide/silicon dioxide nanocomposite prior to FAAS determination. Anal. Methods 11, 454–461 (2019)

    CAS  Google Scholar 

  54. Q. Yang, R. Lu, S. Ren, H. Zhou, Q. Wu, Y. Zhen, Z. Chen, S. Fang, Magnetic beads embedded in poly (sodium-p-styrenesulfonate) and ZIF-67: Removal of nitrophenol from water. J. Solid State Chem. 265, 200–207 (2018)

    CAS  Google Scholar 

  55. C. Qi, L. Zhang, G. Xu, Z. Sun, A. Zhao, D. Jia, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions. Appl. Surf. Sci. 427, 319–327 (2018)

    CAS  Google Scholar 

  56. A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawale, S.H. Pawar, Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl. Surf. Sci. 264, 598–604 (2013)

    CAS  Google Scholar 

  57. S. Jana, S.S. Pradhan, T. Tripathy, Poly (N, N-dimethylacrylamide-co-acrylamide) grafted hydroxyethyl cellulose hydrogel: a useful Congo red dye remover. J. Polym. Environ. 26, 273–2747 (2018)

    Google Scholar 

  58. R.K. Gautam, P.K. Gautam, S. Banerjee, S. Soni, S.K. Singh, M.C. Chattopadhyaya, Removal of Ni(II) by magnetic nanoparticles. J. Mol. Liq. 204, 60–69 (2015)

    CAS  Google Scholar 

  59. S.Z. Mohammadi, M.A. Karimi, D. Afzali, F. Mansouri, Removal of Pb(II) from aqueous solutions using activated carbon from Sea-buckthorn stones by chemical activation. Desalination 262, 86–93 (2010)

    CAS  Google Scholar 

  60. H.M.F. Freundlich, Uber die adsorption in lasugen. J. Phys. Chem. 57, 385–470 (1906)

    CAS  Google Scholar 

  61. S.Z. Mohammadi, H. Hamidian, Z. Moeinadini, High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples. J. Indust. Eng Chem 20, 4112–4118 (2014)

    CAS  Google Scholar 

  62. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms. Acta Phys. Chim. USSR 12, 217–222 (1940)

    Google Scholar 

  63. D. Pradhan, L.B. Sukla, B.B. Mishra, N. Devi, Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J. Clean. Product. 209, 617–629 (2019)

    CAS  Google Scholar 

  64. S.Z. Mohammadi, M.A. Karimi, S.N. Yazdy, T. Shamspur, H. Hamidian, Removal of Pb(II) ions and Malachite green dye from wastewater by activated carbon produced Lemon peel. Quim. Nova 37, 804–809 (2014)

    CAS  Google Scholar 

  65. R. Krishnamoorthy, B. Govindan, F. Banat, V. Sagadevan, M. Purushothaman, P.L. Show, Date pits activated carbon for divalent lead ions removal. J. Biosci. Bioeng. 128, 88–97 (2019)

    CAS  PubMed  Google Scholar 

  66. N.S. Mirbagheri, S. Sabbaghi, A natural kaolin/γ-Fe2O3 composite as an efficient nano-adsorbent for removal of phenol from aqueous solutions. Microporous Mesoporous Mater. 259, 134–141 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The current study was conducted thanks to the support of Payame Noor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Zia Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.Z., Safari, Z. & Madady, N. Synthesis of Co3O4@SiO2 Core/Shell–Nylon 6 Magnetic Nanocomposite as an Adsorbent for Removal of Congo Red from Wastewater. J Inorg Organomet Polym 30, 3199–3212 (2020). https://doi.org/10.1007/s10904-020-01485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01485-x

Keywords

Navigation