Skip to main content
Log in

Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Construction of semiconductor heterojunctions is an efficient strategy to improve photo-induced charges separation and thus enhance photocatalytic activities. Herein, g-C3N4/TiO2 heterostructures were prepared via a facile thermal procedure, with TiO2 nanorods as matrix and g-C3N4 as visible-light sensitizer. Heterojunctions formed while precursors cyanamide polymerized to g-C3N4 and protonated titanate nanotube (H-TNTs) dehydrated and shrinked to TiO2 nanorods. Notably, confined polymerization of g-C3N4 occurred at both external surface and internal space of H-TNTs with the assistant of vacuum treatment, while NH3 released from cyanamide decomposition yielded abundant oxygen vacancies (VO) in TiO2 nanorods. Compared with pristine TiO2 nanorods, the heterostructured g-C3N4/TiO2 nanorods possess 1.7 times more active in photocatalytic removal of organic dye Orange II. A mechanism was proposed for heterostructured g-C3N4/TiO2 nanorods, being attributed to synergistic increasing light harvesting by VO and charges separation by heterojunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. H. Huang, R. Cao, S. Yu, K. Xu, W. Hao, Y. Wang, F. Dong, T. Zhang, Y. Zhang, Appl. Catal. B Environ. 219, 526–537 (2017)

    Article  Google Scholar 

  2. H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, Appl. Catal. B Environ. 199, 75–86 (2016)

    Article  Google Scholar 

  3. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114, 9824–9852 (2014)

    Article  Google Scholar 

  4. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545–4549 (2003)

    Article  Google Scholar 

  5. M. Choi, J. Lim, M. Baek, W. Choi, W. Kim, K. Yong, ACS Appl. Mater. Interfaces 9, 16252–16260 (2017)

    Article  Google Scholar 

  6. S. Nagamine, K. Inohara, Adv. Powder Technol. 29, 3100–3106 (2018)

    Article  Google Scholar 

  7. P. Makal, D. Das, Appl. Surf. Sci. 455, 1106–1115 (2018)

    Article  ADS  Google Scholar 

  8. M.R. Alfaro Cruz, D. Sanchez-Martinez, L.M. Torres-Martínez, Mater. Lett. 237, 310–313 (2019)

    Article  Google Scholar 

  9. L. Lu, G. Wang, M. Zou, J. Wang, J. Li, Appl. Surf. Sci. 441, 1012–1023 (2018)

    Article  ADS  Google Scholar 

  10. Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, Appl. Catal. B Environ. 230, 260–268 (2018)

    Article  Google Scholar 

  11. X.-H. Jiang, Q.-J. Xing, X.-B. Luo, F. Li, J.-P. Zou, S.-S. Liu, X. Li, X.-K. Wang, Appl. Catal. B Environ. 228, 29–38 (2018)

    Article  Google Scholar 

  12. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746–750 (2011)

    Article  ADS  Google Scholar 

  13. K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, ACS Appl. Mater. Interfaces 9, 11577–11586 (2017)

    Article  Google Scholar 

  14. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159–7329 (2016)

    Article  Google Scholar 

  15. M. Faisal, A.A. Ismail, F.A. Harraz, S.A. Al-Sayari, A.M. El-Toni, M.S. Al-Assiri, Mater. Des. 98, 223–230 (2016)

    Article  Google Scholar 

  16. R. Hao, G. Wang, C. Jiang, H. Tang, Q. Xu, Appl. Surf. Sci. 411, 400–410 (2017)

    Article  ADS  Google Scholar 

  17. M. Faisal, A.A. Ismail, F.A. Harraz, H. Bouzid, S.A. Al-Sayari, A. Al-Hajry, Chem. Eng. J. 243, 509–516 (2014)

    Article  Google Scholar 

  18. Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Eng. J. 260, 117–125 (2015)

    Article  Google Scholar 

  19. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Appl. Catal. B Environ. 187, 47–58 (2016)

    Article  Google Scholar 

  20. X. Shi, M. Fujitsuka, Z. Lou, P. Zhang, T. Majima, J. Mater. Chem. A 5, 9671–9681 (2017)

    Article  Google Scholar 

  21. L. Shi, Q. Han, L. Cao, F. Zhao, C. Xia, B. Dong, Y. Xi, J. Nanopart. Res 18, 364 (2016)

    Article  ADS  Google Scholar 

  22. Q. Liang, Z. Li, X. Yu, Z.H. Huang, F. Kang, Q.H. Yang, Adv. Mater. 27, 4634–4639 (2015)

    Article  Google Scholar 

  23. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Nano Lett. 12, 844–849 (2012)

    Article  ADS  Google Scholar 

  24. K. Sridharan, E. Jang, T.J. Park, Appl. Catal. B Environ. 142–143, 718–728 (2013)

    Article  Google Scholar 

  25. X. Zhou, C. Shao, X. Li, X. Wang, X. Guo, Y. Liu, J. Hazard. Mater. 344, 113–122 (2018)

    Article  Google Scholar 

  26. K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces 7, 9023–9030 (2015)

    Article  Google Scholar 

  27. G. Dong, D.L. Jacobs, L. Zang, C. Wang, Appl. Catal. B Environ. 218, 515–524 (2017)

    Article  Google Scholar 

  28. H. Li, F. Ren, J. Liu, Q. Wang, Q. Li, J. Yang, Y. Wang, Appl. Catal. B Environ. 172–173, 37–45 (2015)

    Article  Google Scholar 

  29. J. Li, M. Zhang, Q. Li, J. Yang, Appl. Surf. Sci. 391, 184–193 (2017)

    Article  ADS  Google Scholar 

  30. J. Cao, W. Nie, L. Huang, Y. Ding, K. Lv, H. Tang, Appl. Catal. B Environ. 241, 18–27 (2019)

    Article  Google Scholar 

  31. Z. Cai, X. Zhao, T. Wang, W. Liu, D. Zhao, ACS Sustain. Chem. Eng. 5, 547–555 (2016)

    Article  Google Scholar 

  32. Y. Guo, Y. Dai, W. Zhao, H. Li, B. Xu, C. Sun, Appl. Catal. B Environ. 237, 273–287 (2018)

    Article  Google Scholar 

  33. F.T. Li, S.J. Liu, Y.B. Xue, X.J. Wang, Y.J. Hao, J. Zhao, R.H. Liu, D. Zhao, Chemistry 21, 10149–10159 (2015)

    Article  Google Scholar 

  34. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29, 1601694 (2017)

    Article  Google Scholar 

  35. W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, Appl. Catal. B Environ. 188, 1–12 (2016)

    Article  Google Scholar 

  36. Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B Environ. 220, 290–302 (2018)

    Article  Google Scholar 

  37. W.Q. Li, Z.H. Wen, S.H. Tian, L.J. Shan, Y. Xiong, Catal. Sci. Technol. 8, 1051–1061 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by A Project of Shandong Province Higher Educational Science and Technology Program (No. J18KA011) and Doctoral Found of QUST (No. 010022803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Sun, X., Zhang, H. et al. Nanotube confinement-induced g-C3N4/TiO2 nanorods with rich oxygen vacancies for enhanced photocatalytic water decontamination. Appl. Phys. A 126, 246 (2020). https://doi.org/10.1007/s00339-020-3430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3430-y

Keywords

Navigation