Skip to main content

Advertisement

Log in

Scaffolds and coatings for bone regeneration

  • Tissue engineering constructs and cell substrates
  • Review Article
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone tissue has an astonishing self-healing capacity yet only for non-critical size defects (<6 mm) and clinical intervention is needed for critical-size defects and beyond that along with non-union bone fractures and bone defects larger than critical size represent a major healthcare problem. Autografts are, still, being used as preferred to treat large bone defects. Mostly, due to the presence of living differentiated and progenitor cells, its osteogenic, osteoinductive and osteoconductive properties that allow osteogenesis, vascularization, and provide structural support. Bone tissue engineering strategies have been proposed to overcome the limited supply of grafts. Complete and successful bone regeneration can be influenced by several factors namely: the age of the patient, health, gender and is expected that the ideal scaffold for bone regeneration combines factors such as bioactivity and osteoinductivity. The commercially available products have as their main function the replacement of bone. Moreover, scaffolds still present limitations including poor osteointegration and limited vascularization. The introduction of pores in scaffolds are being used to promote the osteointegration as it allows cell and vessel infiltration. Moreover, combinations with growth factors or coatings have been explored as they can improve the osteoconductive and osteoinductive properties of the scaffold. This review focuses on the bone defects treatments and on the research of scaffolds for bone regeneration. Moreover, it summarizes the latest progress in the development of coatings used in bone tissue engineering. Despite the interesting advances which include the development of hybrid scaffolds, there are still important challenges that need to be addressed in order to fasten translation of scaffolds into the clinical scenario. Finally, we must reflect on the main challenges for bone tissue regeneration. There is a need to achieve a proper mechanical properties to bear the load of movements; have a scaffolds with a structure that fit the bone anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Rep. 2013;2:447.

    Google Scholar 

  2. Boskey AL. Mineralization of bones and teeth. Elements. 2007;3:385–91.

    CAS  Google Scholar 

  3. Kalfas IH. Principles of bone healing. Neurosurg Focus. 2001;10:1–4.

    Google Scholar 

  4. Florencio-Silva R, Sasso GRdS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int. 2015;2015:421746.

    Google Scholar 

  5. Lafage-Proust M-H, Roche B, Langer M, Cleret D, Bossche AV, Olivier T, et al. Assessment of bone vascularization and its role in bone remodeling. BoneKEy Rep. 2015;4:662.

    CAS  Google Scholar 

  6. Reichert JC, Hutmacher DW. Bone tissue engineering. In: Pallua N, Suscheck C. editors. Tissue Engineering. Berlin, Heidelberg: Springer.

  7. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3:S131–9.

    CAS  Google Scholar 

  8. Wu S, Liu X, Yeung KW, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng: R: Rep. 2014;80:1–36.

    Google Scholar 

  9. Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47:S11–20.

    Google Scholar 

  10. Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92–102.

    CAS  Google Scholar 

  11. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    CAS  Google Scholar 

  12. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41.

    CAS  Google Scholar 

  13. Ledet EH, Sanders GP, DiRisio DJ, Glennon JC. Load-sharing through elastic micro-motion accelerates bone formation and interbody fusion. Spine J. 2018;18(7):1222–30. https://doi.org/10.1016/j.spinee.2018.02.004.

    Article  Google Scholar 

  14. Wu Z, Ovaert TC, Niebur GL. Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus. J Orthop Res. 2012;30(5):693–9.

    CAS  Google Scholar 

  15. Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev. 2015;84:1–29.

    CAS  Google Scholar 

  16. Nyary T, Scammell BE. Principles of bone and joint injuries and their healing. Surgery. 2015;33:7–14.

    Google Scholar 

  17. McKibbin B. The biology of fracture healing in long bones. J Bone Jt Surg Br. 1978;60-B:150–62.

    CAS  Google Scholar 

  18. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551–5.

    Google Scholar 

  19. Ilan DI, Ladd AL. Bone graft substitutes. Oper Tech Plast Reconstr Surg. 2002;9:151–60.

    Google Scholar 

  20. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Jt J. 2016;98:6–9.

    Google Scholar 

  21. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

    Google Scholar 

  22. Murphy CM, O’Brien FJ, Little DG, Schindeler A. Cell-scaffold interactions in the bone tissue engineering triad; 2013.

    CAS  Google Scholar 

  23. García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–21.

    Google Scholar 

  24. Taylor GI, Miller GD, Ham FJ. The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg. 1975;55:533–44.

    CAS  Google Scholar 

  25. Houdek M, Bayne C, Bishop A, Shin A. The outcome and complications of vascularised fibular grafts. Bone Jt J. 2017;99:134–8.

    Google Scholar 

  26. Feuvrier D, Sagawa Y, Béliard S, Pauchot J, Decavel P. Long-term donor-site morbidity after vascularized free fibula flap harvesting: clinical and gait analysis. J Plast Reconst Aesthet Surg. 2016;69:262–9.

    Google Scholar 

  27. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:18.

    Google Scholar 

  28. Maatz R, Bauermeister A. A method of bone maceration: results in animal experiments. JBJS. 1957;39:153–66.

    Google Scholar 

  29. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci: Mater Med. 2014;25:2445–61.

    CAS  Google Scholar 

  30. Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42:591–8.

    Google Scholar 

  31. Kombate NK, Walla A, Ayouba G, Bakriga BM, Dellanh YY, Abalo AG, et al. Reconstruction of traumatic bone loss using the induced membrane technique: preliminary results about 11 cases. J Orthop. 2017;14:489–94.

    Google Scholar 

  32. Pelissier P, Masquelet A, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22:73–9.

    CAS  Google Scholar 

  33. Han W, Shen J, Wu H, Yu S, Fu J, Xie Z. Induced membrane technique: Advances in the management of bone defects. Int J Surg. 2017;42:110–6.

    Google Scholar 

  34. Morelli I, Drago L, George DA, Gallazzi E, Scarponi S, Romanò CL. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury. 2016;47:S68–76.

    Google Scholar 

  35. Shrivats AR, McDermott MC, Hollinger JO. Bone tissue engineering: state of the union. Drug Discov Today. 2014;19:781–6.

    CAS  Google Scholar 

  36. Roffi A, Krishnakumar GS, Gostynska N, Kon E, Candrian C, Filardo G. The role of three-dimensional scaffolds in treating long bone defects: evidence from preclinical and clinical literature—a systematic review. BioMed Res Int. 2017;2017:8074178.

    Google Scholar 

  37. Cengiz IF, Oliveira JM, Reis RL. Tissue engineering and regenerative medicine strategies for the treatment of osteochondral lesions. In: 3D multiscale physiological human. London: Springer; 2014. p. 25–47.

    Google Scholar 

  38. Yousefi AM, Hoque ME, Prasad RG, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res Part A. 2015;103:2460–81.

    CAS  Google Scholar 

  39. Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS. Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee. 2017;24:508–17.

    Google Scholar 

  40. Deng Z, Jin J, Zhao J, Xu H. Cartilage defect treatments: with or without cells? Mesenchymal stem cells or chondrocytes? Traditional or matrix-assisted? A systematic review and meta-analyses. Stem Cell Int. 2016;2016:9201492.

    Google Scholar 

  41. Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: current choices. Mater Sci Eng C. 2017;77:1302–15.

    CAS  Google Scholar 

  42. Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM. Tissue engineering 3D neurovascular units: a biomaterials and bioprinting perspective. Trends Biotechnol. 2018;36:457–72.

    CAS  Google Scholar 

  43. Kwee BJ, Mooney DJ. Biomaterials for skeletal muscle tissue engineering. Current Opin Biotechnol. 2017;47:16–22.

    CAS  Google Scholar 

  44. Brian J, David J. Biomaterials for skeletal muscle tissue engineering. Current Opin Biotechnol. 2017;11:2018.

    Google Scholar 

  45. Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol. 2017;37:613–25.

    CAS  Google Scholar 

  46. Boyce ST, Lalley AL. Tissue engineering of skin and regenerative medicine for wound care. Burns Trauma. 2018;6:4.

    Google Scholar 

  47. Cengiz IF, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Treatments of meniscus lesions of the knee: current concepts and future perspectives. Regen Eng Transl Med. 2017;3:1–19.

    Google Scholar 

  48. Zhang Y, Li P, Wang H, Wang Y, Song K, Li T. Research progress on reconstruction of meniscus in tissue engineering. J Sport Med Phys Fit. 2017;57:595–603.

    CAS  Google Scholar 

  49. Dimitrievska S, Niklason LE. Historical perspective and future direction of blood vessel developments. Cold Spring Harbor Perspect Med. 2017;8:a025742.

    Google Scholar 

  50. Jakob F, Ebert R, Ignatius A, Matsushita T, Watanabe Y, Groll J, et al. Bone tissue engineering in osteoporosis. Maturitas. 2013;75:118–24.

    CAS  Google Scholar 

  51. Holzapfel BM, Chhaya MP, Melchels FPW, Holzapfel NP, Prodinger PM, von Eisenhart-Rothe R, et al. Can bone tissue engineering contribute to therapy concepts after resection of musculoskeletal sarcoma? Sarcoma. 2013;2013:153640.

    Google Scholar 

  52. Paxton NC. Designing patient-specific melt-electrospun scaffolds for bone regeneration. (Doctoral dissertation, Queensland University of Technology) 2017.

  53. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28.

    CAS  Google Scholar 

  54. Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ. Bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res Part B: Appl Biomaters. 2009;90:131–6.

    Google Scholar 

  55. Plum AW, Tatum SA. A comparison between autograft alone, bone cement, and demineralized bone matrix in cranioplasty. Laryngoscope. 2015;125:1322–7.

    CAS  Google Scholar 

  56. Ren H, Li A, Liu B, Dong Y, Tian Y, Qiu D. Novel bioactive glass based injectable bone cement with improved osteoinductivity and its in vivo evaluation. Sci Rep. 2017;7:3622.

    Google Scholar 

  57. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36:S20–7.

    Google Scholar 

  58. Jones AC, Arns CH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt MA. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials. 2009;30:1440–51.

    CAS  Google Scholar 

  59. Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci. 2014;39:1406–47.

    CAS  Google Scholar 

  60. Jean RP, Gray DS, Spector AA, Chen CS. Characterization of the nuclear deformation caused by changes in endothelial cell shape. Trans ASME-K-J Biomech Eng. 2004;126:552–8.

    Google Scholar 

  61. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    CAS  Google Scholar 

  62. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implant Res. 2009;20:172–84.

    Google Scholar 

  63. Albertini M, Fernandez-Yague M, Lázaro P, Herrero-Climent M, Rios-Santos J-V, Bullon P, et al. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces. Med Oral Patol Oral Cir Bucal. 2015;20:e316.

    Google Scholar 

  64. Liu W, Wei Y, Zhang X, Xu M, Yang X, Deng X. Lower extent but similar rhythm of osteogenic behavior in hBMSCs cultured on nanofibrous scaffolds versus induced with osteogenic supplement. ACS Nano. 2013;7:6928–38.

    CAS  Google Scholar 

  65. Yavari SA, van der Stok J, Chai YC, Wauthle R, Birgani ZT, Habibovic P, et al. Bone regeneration performance of surface-treated porous titanium. Biomaterials. 2014;35:6172–81.

    Google Scholar 

  66. Qian J, Xu M, Suo A, Yang T, Yong X. An innovative method to fabricate honeycomb-like poly (ε-caprolactone)/nano-hydroxyapatite scaffolds. Mater Lett. 2013;93:72–76.

    CAS  Google Scholar 

  67. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    CAS  Google Scholar 

  68. Lukaszewska-Kuska M, Wirstlein P, Majchrowski R, Dorocka-Bobkowska B. Osteoblastic cell behaviour on modified titanium surfaces. Micron. 2018;105:55–63.

    CAS  Google Scholar 

  69. Zhou X, Li J, Sun H, Hu Y, Che L, Wang Z. Controlled cell patterning on bioactive surfaces with special wettability. J Bionic Eng. 2017;14:440–7.

    Google Scholar 

  70. Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, et al. BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res Part A. 1998;39:190–9.

    CAS  Google Scholar 

  71. Prananingrum W, Naito Y, Galli S, Bae J, Sekine K, Hamada K, et al. Bone ingrowth of various porous titanium scaffolds produced by a moldless and space holder technique: an in vivo study in rabbits. Biomed Mater. 2016;11:015012.

    Google Scholar 

  72. Bohner M, Loosli Y, Baroud G, Lacroix D. Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 2011;7:478–84.

    CAS  Google Scholar 

  73. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–6.

    CAS  Google Scholar 

  74. Jones AC, Milthorpe B, Averdunk H, Limaye A, Senden TJ, Sakellariou A, et al. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials. 2004;25:4947–54.

    CAS  Google Scholar 

  75. Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Pattanayak DK, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 2011;7:2327–36.

    CAS  Google Scholar 

  76. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C. 2016;59:690–701.

    CAS  Google Scholar 

  77. Deepthi S, Venkatesan J, Kim S-K, Bumgardner JD, Jayakumar R. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93:1338–53.

    CAS  Google Scholar 

  78. Kuttappan S, Mathew D, Nair MB. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering—a mini review. Int J Biol Macromol. 2016;93:1390–401.

    CAS  Google Scholar 

  79. Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Poly Sci. 2012;37:237–80.

    CAS  Google Scholar 

  80. Bacelar AH, Cengiz IF, Silva-Correia J, Sousa RA, Oliveira JM, Reisa RL. “Smart” hydrogels in tissue engineering and regenerative medicine applications. In: Khang G, editor. Handbook of intelligent scaffolds for tissue engineering and regenerative medicine. Taylor & Francis, 2017. p. 327–61.

  81. Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater. 2013;2:57–71.

    CAS  Google Scholar 

  82. Draxler J, Martinelli E, Weinberg AM, Zitek A, Irrgeher J, Meischel M, et al. The potential of isotopically enriched magnesium to study bone implant degradation in vivo. Acta Biomater. 2017;51:526–36.

    CAS  Google Scholar 

  83. Hou JY, Zhang SQ, Ke L. The application of metal materials in exercise-induced bone injury. Adv Mater Res. 2013;675:205–8.

    CAS  Google Scholar 

  84. Crubzy E, Murail P, Girard L, Bernadou J-P. False teeth of the Roman world. Nature. 1998;391:29.

    Google Scholar 

  85. Zhao D, Huang S, Lu F, Wang B, Yang L, Qin L, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials. 2016;81:84–92.

    CAS  Google Scholar 

  86. Nielsen K. Corrosion of metallic implants. Br Corros J. 1987;22:272–8.

    CAS  Google Scholar 

  87. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4:445.

    CAS  Google Scholar 

  88. Niinomi M. Metallic biomaterials. J Artif Organs. 2008;11:105.

    CAS  Google Scholar 

  89. Elias C, Lima JH, Valiev R, Meyers M. Biomedical applications of titanium and its alloys. J Miner Met Mater Soc. 2008;60:46–9.

    CAS  Google Scholar 

  90. Goriainov V, Cook R, Latham JM, Dunlop DG, Oreffo RO. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014;10:4043–57.

    CAS  Google Scholar 

  91. Sekhar MC, Rao G, Neeharika VB, Satyanarayana K. Design and analysis of artificial hip joint. Int J Eng Manag Res. 2017;7:305–12.

    Google Scholar 

  92. Navarro M, Michiardi A, Castano O, Planell J. Biomaterials in orthopaedics. J R Soc Interface. 2008;5:1137–58.

    CAS  Google Scholar 

  93. Ibrahim MZ, Sarhan AA, Yusuf F, Hamdi M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants—a review article. J Alloy Compd. 2017;714:636–67.

    CAS  Google Scholar 

  94. Xiang Z, Spector M. Biocompatibility of materials, encyclopedia of medical devices and instrumentation. Hoboken, New Jersey: John Wiley and Sons, Inc; 2006.

  95. Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    CAS  Google Scholar 

  96. Wally ZJ, van Grunsven W, Claeyssens F, Goodall R, Reilly GC. Porous titanium for dental implant applications. Metals. 2015;5:1902–20.

    CAS  Google Scholar 

  97. Pobloth A-M, Checa S, Razi H, Petersen A, Weaver JC, Schmidt-Bleek K, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med. 2018;10:eaam8828.

    Google Scholar 

  98. Godoy Zanicotti D, Coates DE, Duncan WJ. In vivo bone regeneration on titanium devices using serum-free grown adipose-derived stem cells, in a sheep femur model. Clin Oral Implant Res. 2017;28:64–75.

    Google Scholar 

  99. Chevalier J, Gremillard L. Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 2009;29:1245–55.

    CAS  Google Scholar 

  100. Piconi C, Maccauro G, Muratori F, Prever E. Alumina and zirconia ceramics in joint replacements. J Appl Biomater Biomech. 2003;1:19–32.

    CAS  Google Scholar 

  101. Lobo SE, Livingston Arinzeh T. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials. 2010;3:815–26.

    CAS  Google Scholar 

  102. Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater. 2017;59:2–11.

    CAS  Google Scholar 

  103. El-Ghany OSA, Sherief AH. Zirconia based ceramics, some clinical and biological aspects: review. Future Dent J. 2016;2:55–64.

    Google Scholar 

  104. Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol. 2003;29:8–12.

    Google Scholar 

  105. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006;27:535–43.

    CAS  Google Scholar 

  106. Canadas RF, Pina S, Marques AP, Oliveira JM, Reis RL. Cartilage and bone regeneration: how close are we to bedside? In: Laurence J, editor. Translating regenerative medicine to the clinic. Elsevier; 2014.

  107. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15:3640–59.

    CAS  Google Scholar 

  108. El Bialy I, Jiskoot W, Nejadnik MR. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34:1152–70.

    CAS  Google Scholar 

  109. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125:315–37.

    Google Scholar 

  110. Alenezi A, Naito Y, Terukina T, Prananingrum W, Jinno Y, Tagami T, et al. Controlled release of clarithromycin from PLGA microspheres enhances bone regeneration in rabbit calvaria defects. J Biomed Mater Res Part B: Appl Biomater. 2017;106:201–8.

    Google Scholar 

  111. Asti A, Gioglio L. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs. 2014;37:187–205.

    Google Scholar 

  112. Kämmerer PW, Scholz M, Baudisch M, Liese J, Wegner K, Frerich B, et al. Guided bone regeneration using collagen scaffolds, growth factors, and periodontal ligament stem cells for treatment of peri-implant bone defects in vivo. Stem Cells Int. 2017;2017:3548435.

    Google Scholar 

  113. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991–1007.

    CAS  Google Scholar 

  114. Ribeiro VP, Silva-Correia J, Nascimento AI, da Silva Morais A, Marques AP, Ribeiro AS, et al. Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials. 2017;123:92–106.

    CAS  Google Scholar 

  115. Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, et al. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv. 2017;36:68–91.

    Google Scholar 

  116. Koh KS, Choi JW, Park EJ, Oh TS. Bone regeneration using silk hydroxyapatite hybrid composite in a rat alveolar defect model. Int J Med Sci. 2018;15:59.

    CAS  Google Scholar 

  117. Bhattacharjee P, Kundu B, Naskar D, Kim H-W, Maiti TK, Bhattacharya D, et al. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 2017;63:1–17.

    CAS  Google Scholar 

  118. Kulanthaivel S, VS SR, Agarwal T, Pradhan S, Pal K, Giri S, et al. Gum tragacanth–alginate beads as proangiogenic–osteogenic cell encapsulation systems for bone tissue engineering. J Mater Chem B. 2017;5:4177–89.

    CAS  Google Scholar 

  119. Filardo G, Perdisa F, Gelinsky M, Despang F, Fini M, Marcacci M, et al. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. J Mater Sci: Mater Med. 2018;29:74.

    Google Scholar 

  120. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780–92.

    CAS  Google Scholar 

  121. Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A, Kamali A. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. J Controll Release. 2017;254:65–74.

    CAS  Google Scholar 

  122. Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res. 2017;5(1):1–33.

    Google Scholar 

  123. Johansson P, Jimbo R, Kjellin P, Currie F, Ramos Chrcanovic B, Wennerberg A. Biomechanical evaluation and surface characterization of a nano-modified surface on PEEK implants: a study in the rabbit tibia. Int J Nanomed. 2014;9:3903–11.

    Google Scholar 

  124. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.

    CAS  Google Scholar 

  125. Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014;15:5426–45.

    Google Scholar 

  126. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60:12–9.

    Google Scholar 

  127. Akkan CK, Hammadeh ME, May A, Park H-W, Abdul-Khaliq H, Strunskus T, et al. Surface topography and wetting modifications of PEEK for implant applications. Lasers Med Sci. 2014;29:1633–9.

    Google Scholar 

  128. Hieda A, Uemura N, Hashimoto Y, Toda I, Baba S. In vivo bioactivity of porous polyetheretherketone with a foamed surface. Dent Mater J. 2017;36:222–9.

    CAS  Google Scholar 

  129. Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med. 2015;30:279.

    Google Scholar 

  130. Josset Y, Oum’Hamed Z, Zarrinpour A, Lorenzato M, Adnet J-J, Laurent-Maquin D. In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J Biomed Mater Res. 1999;47:481–93.

    CAS  Google Scholar 

  131. Li Y, Chen S-K, Li L, Qin L, Wang X-L, Lai Y-X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Transl. 2015;3:95–104.

    Google Scholar 

  132. Shin K, Acri T, Geary S, Salem AK. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng Part A. 2017;23:1169–80.

    CAS  Google Scholar 

  133. Galliano P, De Damborenea JJ, Pascual MJ, Duran A. Sol-gel coatings on 316L steel for clinical applications. J Sol–Gel Sci Technol. 1998;13:723–7.

    CAS  Google Scholar 

  134. Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: a literature review. Adv Drug Deliv Rev. 2017;112:88–100.

    CAS  Google Scholar 

  135. Geesink R, de Groot K, Klein C. Bonding of bone to apatite-coated implants. Bone Jt J. 1988;70:17–22.

    CAS  Google Scholar 

  136. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    CAS  Google Scholar 

  137. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C. 2017;71:1253–66.

    CAS  Google Scholar 

  138. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B: Rev. 2013;19:431–41.

    CAS  Google Scholar 

  139. Søballe K. Hydroxyapatite ceramic coating for bone implant fixation: mechanical and histological studies in dogs. Acta Orthop Scand. 1993;64:1–58.

    Google Scholar 

  140. Hench LL, Splinter RJ, Allen W, Greenlee T. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Part A. 1971;5:117–41.

    Google Scholar 

  141. Liu X, Xie Z, Zhang C, Pan H, Rahaman MN, Zhang X, et al. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J Mater Sci: Mater Med. 2010;21:575–82.

    CAS  Google Scholar 

  142. Zhang J, Guan J, Zhang C, Wang H, Huang W, Guo S, et al. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs. Biomed Mater. 2015;10:065011.

    Google Scholar 

  143. Ye X, Leeflang S, Wu C, Chang J, Zhou J, Huan Z. Mesoporous bioactive glass functionalized 3D Ti-6Al-4V scaffolds with improved surface bioactivity. Materials. 2017;10:1244.

    Google Scholar 

  144. Romero R, Travers JK, Asbury E, Pennybaker A, Chubb L, Rose R, et al. Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect. J Biomed Mater Res Part A. 2017;105:900–11.

    CAS  Google Scholar 

  145. Yuan Q, Wu J, Qin C, Xu A, Zhang Z, Lin S, et al. Spin-coating synthesis and characterization of Zn-doped hydroxyapatite/polylactic acid composite coatings. Surf Coat Technol. 2016;307:461–9.

    CAS  Google Scholar 

  146. Fathi M, Doostmohammadi A. Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J Mater Process Technol. 2009;209:1385–91.

    CAS  Google Scholar 

  147. Molino G, Bari A, Baino F, Fiorilli S, Vitale-Brovarone C. Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration. J Mater Sci. 2017;54:1–12.

  148. Oliveira JM, Leonor IB, Reis RL. Preparation of bioactive coatings on the surface of bioinert polymers through an innovative auto-catalytic electroless route. Key Eng Mater. 2005;284:203–6.

    CAS  Google Scholar 

  149. Lee H, Liao J-D, Sivashanmugan K, Liu BH, Weng S-L, Juang Y-D, et al. Dual properties of zirconia coated porous titanium for a stiffness enhanced bio-scaffold. Mater Des. 2017;132:13–21.

    CAS  Google Scholar 

  150. Tang C, Tsui C, Janackovic D, Uskokovic P. Nanomechanical properties evaluation of bioactive glass coatings on titanium alloy substrate. J Optoelectron Adv Mater. 2006;8:1194.

    CAS  Google Scholar 

  151. Ye H, Zhu L, Li W, Liu H, Chen H. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications. J Mater Chem A. 2017;5:9882–90.

    CAS  Google Scholar 

  152. Bai X, Sandukas S, Appleford M, Ong JL, Rabiei A. Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res Part B: Appl Biomater. 2012;100:553–61.

    Google Scholar 

  153. Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017;10:334.

    Google Scholar 

  154. Zakhary KE, Thakker JS. Emerging biomaterials in trauma. Oral Maxillofac Surg Clin. 2017;29:51–62.

    Google Scholar 

  155. Kim S-J, Park H-S, Lee D-W, Lee J-W. Is calcium phosphate augmentation a viable option for osteoporotic hip fractures? Osteoporos Int. 2018;29:1–8.

    Google Scholar 

  156. Chen F, Yu Y, Ma X, Liu C. Injectable calcium phosphate cements for hard tissue repair. In: Wang M, editor. Developments and applications of calcium phosphate bone cements. Singapore: Springer; 2018. p. 147–86.

    Google Scholar 

  157. Wu M, Wu M, Wu M, Wu C, Novel Tracing A. Method in differentiating between ectopic odontogenic fistulous and sinus infections. Oral Health Case Rep. 2016;2:2.

    Google Scholar 

  158. Midha S, Kim TB, van den Bergh W, Lee PD, Jones JR, Mitchell CA. Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater. 2013;9:9169–82.

    CAS  Google Scholar 

  159. Glassman SD, Carreon L, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, et al. Posterolateral lumbar spine fusion with INFUSE bone graft. Spine J. 2007;7:44–49.

    Google Scholar 

  160. Kim Y-K, Kim S-G, Lim S-C, Lee H-J, Yun P-Y. A clinical study on bone formation using a demineralized bone matrix and resorbable membrane. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2010;109:e6–11.

    Google Scholar 

  161. Epstein NE. High lumbar noninstrumented fusion rates using lamina autograft and Nanoss/bone marrow aspirate. Surg Neurol int. 2017;8:153.

    Google Scholar 

  162. Patel JJ. Single and dual growth factor delivery from Poly-E-caprolactone scaffolds for pre-fabricated bone flap engineering (Doctoral dissertation), University of Michigan; 2015.

  163. Hunsberger J, Neubert J, Wertheim JA, Allickson J, Atala A. Bioengineering priorities on a path to ending organ shortage. Curr Stem Cell Rep. 2016;2:118–27.

    CAS  Google Scholar 

  164. D’Agostino P, Barbier O. An investigation of the effect of AlloMatrix bone graft in distal radial fracture. Bone Jt J. 2013;95:1514–20.

    Google Scholar 

  165. Gupta S, Mohan V, Gupta MC. Biology of spine fusion and application of osteobiologics in spine surgery. In: Vukicevic S, editor. Bone morphogenetic proteins: systems biology regulators. Cham: Springer; 2017. p. 229–47.

    Google Scholar 

  166. Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, Luyten FP. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials. 2011;32:4393–405.

    CAS  Google Scholar 

  167. Walsh W, Christou C, Low A, Yu Y, Oliver R, Bertollo N, et al. Bone graft materials: a comparison of NanOss Bioactive 3d and VitOss BA in a challenging model. Bone Jt J. 2013;95:359–9.

    Google Scholar 

  168. Walsh WR, Oliver RA, Christou C, Lovric V, Walsh ER, Prado GR, et al. Critical size bone defect healing using collagen–calcium phosphate bone graft materials. PLoS ONE. 2017;12:e0168883.

    Google Scholar 

  169. Marya S, Ariyanayagam T, Chatterjee B, Toms AP, Crawford R, Prospective A. Study of the efficacy of vitoss (beta tricalcium phosphate) as a bone graft substitute for instrumented posterolateral lumbar fusions. Spine J. 2017;17:S23.

    Google Scholar 

  170. Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res. 2000;371:38–45.

    Google Scholar 

  171. Emerging biomaterials in trauma. Oral and Maxillofacial Surgery Clinics. 2017;29(1):51–62. https://www.oralmaxsurgery.theclinics.com/article/S1042-3699(16)30075-9/abstract.

  172. Zhu W, Zhao Y, Ma Q, Wang Y, Wu Z, Weng X. 3D-printed porous titanium changed femoral head repair growth patterns: osteogenesis and vascularisation in porous titanium. J Mater Sci: Mater Med. 2017;28:62.

    Google Scholar 

  173. Li Y, Yang W, Li X, Zhang X, Wang C, Meng X, et al. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces. 2015;7:5715–24.

    CAS  Google Scholar 

  174. Guyer RD, Abitbol J-J, Ohnmeiss DD, Yao C. Evaluating osseointegration into a deeply porous titanium scaffold: a biomechanical comparison with PEEK and allograft. Spine. 2016;41:E1146–50.

    Google Scholar 

  175. Cohen DJ, Cheng A, Sahingur K, Clohessy RM, Hopkins LB, Boyan BD, et al. Performance of laser sintered Ti–6Al–4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur. Biomed Mater. 2017;12:025021.

    Google Scholar 

  176. Li G, Wang L, Pan W, Yang F, Jiang W, Wu X, et al. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep. 2016;6:34072.

    CAS  Google Scholar 

  177. Evans NT, Torstrick FB, Lee CS, Dupont KM, Safranski DL, Chang WA, et al. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 2015;13:159–67.

    CAS  Google Scholar 

  178. Kim JM, Son JS, Kang SS, Kim G, Choi SH. Bone regeneration of hydroxyapatite/alumina bilayered scaffold with 3 mm passage-like medullary canal in canine tibia model. BioMed Res Int. 2015;2015:235108.

    Google Scholar 

  179. Masaoka T, Yoshii T, Yuasa M, Yamada T, Taniyama T, Torigoe I, et al. Bone defect regeneration by a combination of a β-tricalcium phosphate scaffold and bone marrow stromal cells in a non-human primate model. Open Biomed Eng J. 2016;10:2.

    CAS  Google Scholar 

  180. Yilmaz D, Dogan N, Ozkan A, Sencimen M, Ora BE, Mutlu I. Effect of platelet rich fibrin and beta tricalcium phosphate on bone healing. A histological study in pigs. Acta Cir Bras. 2014;29:59–65.

    Google Scholar 

  181. Smith JO, Tayton ER, Khan F, Aarvold A, Cook RB, Goodship A, et al. Large animal in vivo evaluation of a binary blend polymer scaffold for skeletal tissue‐engineering strategies; translational issues. J Tissue Eng Regen Med. 2017;11:1065–76.

    CAS  Google Scholar 

  182. Zaky S, Lee K, Gao J, Jensen A, Verdelis K, Wang Y, et al. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Acta Biomater. 2017;54:95–106.

    CAS  Google Scholar 

  183. Prosecká E, Rampichová M, Litvinec A, Tonar Z, Králíčková M, Vojtova L, et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J Biomed Mater Res Part A. 2015;103:671–82.

    Google Scholar 

  184. Khojasteh A, Fahimipour F, Jafarian M, Sharifi D, Jahangir S, Khayyatan F. et al. Bone engineering in dog mandible: coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor. J Biomed Mater Res Part B: Appl Biomater. 2017;105:1767–77.

    CAS  Google Scholar 

  185. Russo A, Bianchi M, Sartori M, Boi M, Giavaresi G, Salter D, et al. Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J Biomed Mater Res Part B: Appl Biomater. 2018;106:546–54.

    CAS  Google Scholar 

  186. Deng L, Li D, Yang Z, Xie X, Kang P. Repair of the calvarial defect in goat model using magnesium-doped porous hydroxyapatite combined with recombinant human bone morphogenetic protein-2. Bio-med Mater Eng. 2017;28:361–77.

    CAS  Google Scholar 

  187. Kargozar S, Hashemian SJ, Soleimani M, Milan PB, Askari M, Khalaj V, et al. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Mater Sci Eng C. 2017;75:688–98.

    CAS  Google Scholar 

  188. Kirby GT, White LJ, Steck R, Berner A, Bogoevski K, Qutachi O, et al. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects. Materials. 2016;9:259.

    Google Scholar 

Download references

Acknowledgements

This article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and is supported by Portuguese Foundation for Science and Technology in the scope of the projects UID/EEA/04436/2013 and NORTE-01-0145-FEDER-000018-HAMaBICo. JMO thanks the Portuguese Foundation for Science and Technology (FCT) for the funds provided under the program Investigador FCT 2015 (IF/01285/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Filipa Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, H.F., Cengiz, I.F., Silva, F.S. et al. Scaffolds and coatings for bone regeneration. J Mater Sci: Mater Med 31, 27 (2020). https://doi.org/10.1007/s10856-020-06364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06364-y

Navigation