Skip to main content
Log in

Synthesis of carbon-coated LiMn0.8Fe0.2PO4 materials via an aqueous rheological phase-assisted solid-state method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Synthesis method is crucial to the improved electrochemical performances of LiMnPO4 materials with poor electronic and ionic conductivity for large-scale preparation. Here, carbon-coated LiMn0.8Fe0.2PO4 materials were synthesized through a rheological phase-assisted solid-state method combined with freeze-drying. Effect of different carbon sources on the structure, morphology, and electrochemical performance of as-prepared LiMn0.8Fe0.2PO4 materials was investigated. The results suggest that LiMn0.8Fe0.2PO4 materials with citric acid as carbon sources show a high discharge capacity with 164, 122, and 106 mA h g−1 at 0.1, 1, and 5 C, and a capacity retention of around 99.6% after 100 cycles at 1 C. This can be attributed to higher surface area, intense peak of sp2 N–C=N bonds, and uniform particle distribution resulting from the rheological phase formed using citric acid as carbon sources combined with freeze-drying. The rheological phase-assisted solid-state method is a promising route for production of LiMn0.8Fe0.2PO4 materials with excellent performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113(8):6552–6591

    CAS  PubMed  Google Scholar 

  2. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  PubMed  Google Scholar 

  3. Wang XY, Su Z, Li SS (2017) Synthesis and electrochemical properties of LiMn0.71Fe0.29PO4 ·0.3Li3V2(PO4)3/C composite as high-performance cathode materials for lithium-ion batteries. Int J Electrochem Sci 12(1):386–395

    CAS  Google Scholar 

  4. Guo JZ, Wang PF, Wu XL, Zhang XH, Yan Q, Chen H, Zhang JP, Guo YG (2017) High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv Mater 29(33):1701968–1701975

    Google Scholar 

  5. Wu XL, Guo YG, Su J, Xiong JW, Zhang YL, Wan LJ (2013) Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv Energy Mater 3(9):1155–1160

    CAS  Google Scholar 

  6. Guo JZ, Wu XL, Wan F, Wang J, Zhang XH, Wang RS (2015) A superior Na3V2(PO4)3-based nanocomposite enhanced by both N-doped coating carbon and graphene as the cathode for sodium-ion batteries. Chem Eur 21:17371–17378

    CAS  Google Scholar 

  7. Ma F, Zhang XY, He P, Zhang XP, Wang P, Zhou HS (2017) Synthesis of hierarchical and bridging carbon-coated LiMn0.9Fe0.1PO4 nanostructure as cathode material with improved performance for lithium ion battery. J Power Sources 359:408–414

    CAS  Google Scholar 

  8. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Electrochem Soc 144:1188–1194

    CAS  Google Scholar 

  9. Cai YY, Zhang DY, Chang CK, Sheng ZM, Huang KJ (2016) Electrochemical comparison of LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials. Ionics 22(7):1011–1019

    CAS  Google Scholar 

  10. Yan DL, Zhao YM, Dong YZ, Liang ZY, Lin XH (2016) Synthesis, characterization, and electrochemical properties of Li2Mn1-xFex(PO3)4 cathode material for lithium-ion batteries. J Solid State Electrochem 20(2):337–344

    CAS  Google Scholar 

  11. Prabaharan SRS, Star RA, Kulkarni AR, Michael MS (2015) Nano-composite LiMnPO4 as new insertion electrode for electrochemical supercapacitors. Curr Appl Phys 15(12):1624–1633

    Google Scholar 

  12. Cao XX, Pan AQ, Zhang YF, Li JW, Luo ZG, Yang X, Liang SQ, Cao GZ (2016) Nanorod-nanoflake interconnected LiMnPO4 center dot Li3V2(PO4)3/C composite for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 8(41):27632–27641

    CAS  PubMed  Google Scholar 

  13. Di Lecce D, Brescia R, Scarpellini A, Prato M, Hassoun J (2016) A high voltage olivine cathode for application in lithium-ion batteries. Chemsuschem 9(2):223–230

    PubMed  Google Scholar 

  14. Zhao M, Fu Y, Xu N, Li GR, Wu MT, Gao XP (2014) High performance LiMnPO4/C prepared by a crystallite size control method. J Mater Chem A 2(36):15070–15077

    CAS  Google Scholar 

  15. Zhu HJ, Zhai W, Yang M, Liu XM, Chen YC, Yang H, Shen XD (2014) Synthesis and characterization of LiMnPO4/C nano-composites from manganese(II) phosphate trihydrate precipitated from a micro-channel reactor approach. RSC Adv 4(49):25625–25632

    CAS  Google Scholar 

  16. Gao Z, Pan XL, Zeng YY, Xia X, Yuan HL, Pei Y, Chen HH (2015) Effects of hydrothermal temperature on morphology and electrochemical performance of LiMnPO4 cathodes. Int J Electrochem Sci 10(12):10017–10028

    CAS  Google Scholar 

  17. Guo H, Wu CY, Liao LH, Xie J, Zhang SC, Zhu PY, Cao GS, Zhao XB (2015) Performance improvement of lithium manganese phosphate by controllable morphology tailoring with acid-engaged nano engineering. Inorg Chem 54(2):667–674

    CAS  PubMed  Google Scholar 

  18. Liu ZM, Peng WJ, Fan YL, Li XH, Wang ZX, Guo HJ, Wang JX (2015) One-step facile synthesis of graphene-decorated LiVPO4F/C nanocomposite as cathode for high-performance lithium ion battery. Ceram Int 41(7):9188–9192

    CAS  Google Scholar 

  19. Johnson ID, Loveridge M, Bhagat R, Darr JA (2016) Mapping structure composition property relationships in V and Fe-doped LiMnPO4 cathodes for lithium-ion batteries. ACS Comb Sci 18(11):665–672

    CAS  PubMed  Google Scholar 

  20. Shiratsuchi T, Okada S, Doi T, Yamaki J (2009) Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochim Acta 54(11):3145–3151

    CAS  Google Scholar 

  21. Zhu K, Zhang W, Du J, Liu X, Tian J, Ma H, Liu S, Shan Z (2015) Reaction mechanism and influence of the experimental variables for solvothermal synthesized LiMnPO4 nanoplates. J Power Sources 300:139–146

    CAS  Google Scholar 

  22. Wi S, Kim J, Lee S, Kang J, Kim KH, Park K, Kim K, Nam S, Kim C, Park B (2016) Synthesis of LiMn0.8Fe0.2PO4 mesocrystals for high-performance Li-ion cathode materials. Electrochim Acta 216:203–210

    CAS  Google Scholar 

  23. Yang L, Xia Y, Fan X, Qin L, Qiu B, Liu Z (2016) Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery. Electrochim Acta 191:200–206

    CAS  Google Scholar 

  24. Wu CY, Xie J, Cao GS, Zhao XB, Zhang SC (2014) Ordered LiMPO4 (M = Fe, Mn) nanorods synthesized from NH4MPO4·H2O microplates by stress involved ion exchange for Li-ion batteries. Crystengcomm 16(11):2239–2245

  25. Hatta N, Yoshida Y, Tomita H (2015) High power LiMnPO4 cathode coated with hybrid layer of Li ion conductive phosphate and electro-conductive carbon. J Electrochem Soc 162(8):A1556–A1565

    CAS  Google Scholar 

  26. Zheng JG, Ni L, Lu YW, Qin CC, Liu PX, Wu TF, Tang YF, Chen YF (2015) High-performance, nanostructure LiMnPO4/C composites synthesized via one-step solid state reaction. J Power Sources 282:444–451

    CAS  Google Scholar 

  27. Manjunatha H, Venkatesha TV, Suresh GS (2012) Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium-ion battery electrode. J Solid State Electrochem 16(5):1941–1952

    CAS  Google Scholar 

  28. Kadoma Y, Harata K, Watanabe H, Kumagai N, Ui K (2014) Solvothermal synthesis and electrochemical properties of LiMnPO4 and its carbon composite. Electrochemistry 82(6):456–461

    CAS  Google Scholar 

  29. Kwon NH, Yin H, Brodard P, Sugnaux C, Fromm KM (2014) Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode. Electrochim Acta 134:215–221

    CAS  Google Scholar 

  30. Delacourt C, Poizot P, Morcrette M, Tarascon J-M, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99

    CAS  Google Scholar 

  31. Wang Y, Yang H, Wu CY, Duh JG (2017) Facile and controllable one-pot synthesis of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries. J Mater Chem A 5(35):18674–18683

    CAS  Google Scholar 

  32. Dinh HC, Mho SI, Kang Y, Yeo IH (2013) Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. J Power Sources 244:189–195

    CAS  Google Scholar 

  33. Zhou X, Xie Y, Deng YF, Qin XS, Chen GH (2015) The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. J Mater Chem A 3(3):996–1004

    CAS  Google Scholar 

  34. Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, Feng X, Cao Y, Shen C (2019) High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv Mater 31(8):1806664–1806672

    Google Scholar 

  35. Hou BH, Wang YY, Liu DS, Gu ZY, Feng X, Fan H, Zhang T, Lü C, Wu XL (2018) N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater 28(47):1805444–1805452

    Google Scholar 

  36. Wen F, Shu H, Zhang Y, Wan J, Huang W, Yang X, Yu R, Liu L, Wang X (2016) Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries. Electrochim Acta 214:85–93

    CAS  Google Scholar 

  37. Liu DS, Liu DH, Hou BH, Wang YY, Guo JZ, Ning QL, Wu XL (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300

    CAS  Google Scholar 

  38. Li YJ, Fan JM, Zheng MS, Dong QF (2016) A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ Sci 9:1998–2004

    CAS  Google Scholar 

  39. Choi D, Xiao J, Choi YJ, Hardy JS, Vijayakumar M, Bhuvaneswari MS, Liu J, Xu W, Wang W, Yang Z, Graff GL, Zhang JG (2011) Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries. Energy Environ Sci 4(11):4560–4566

    CAS  Google Scholar 

  40. Norberg NS, Kostecki R (2012) The degradation mechanism of a composite LiMnPO4 cathode. J Electrochem Soc 159(9):A1431–A1434

    CAS  Google Scholar 

  41. Huang Y, Chernova NA, Yin Q, Wang Q, Quackenbush NF, Leskes M, Fang J, Omenya F, Zhang R, Wahila MJ, Piper LFJ, Zhou G, Grey CP, Whittingham MS (2016) What happens to LiMnPO4 upon chemical delithiation? Inorg Chem 55(9):4335–4343

    CAS  PubMed  Google Scholar 

  42. Yang H, Liu J, Wang X, Zhao C, Wang L, Wang Y, Xia Y, Liu T (2019) Positive surface pseudocapacitive behavior-induced fast and large Li-ion storage in mesoporous LiMnPO4@C nanofibers. ChemSusChem 12(16):3817–3826

    CAS  PubMed  Google Scholar 

  43. Ma X, Xu Z, Gai L, Marcus K, Kong Y, Zhou J, Yang Y (2018) Room-temperature-and-pressure vapor deposition of trace amount of pyrrole for improving the ageing resistance and electrochemical performance of LiFePO4/C. J Electrochem Soc 165(13):A3136–A3143

    CAS  Google Scholar 

  44. Li S, Ma Y, Liu Y, Xin G, Wang M, Zhang Z, Liu Z (2019) Electrochemical sensor based on a three dimensional nanostructured MoS2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv 9(6):2997–3003

    CAS  Google Scholar 

  45. Mei R, Yang Y, Song X, An Z, Yan K, Zhang J (2016) Graphene encapsulated spherical hierarchical superstructures self-assembled by LiFe0.75Mn0.25PO4 nanoplates for high-performance Li-ion batteries. Electrochim Acta 218:325–334

    CAS  Google Scholar 

  46. Li Y, Geng G, Hao J, Zhang J, Yang C, Li B (2015) Optimized synthesis of LiFePO4 composites via rheological phase assisted method from FePO4 with acetic acid as dispersant. Electrochim Acta 186:157–164

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial supports from the Research Foundation for Advanced Talents of Henan Institute of Science and Technology (No. 2016036), Henan Postdoctoral Science Foundation (No. 001802032), the National Natural Science Foundation of China (No. 21703057), Programs for Science and Technology Development of Henan Province of China (No. 192102210016), and Key Scientific Research Project of Colleges and Universities of Henan Province (No. 19A150007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanchao Li or Wenxiu Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, G., Fan, S. et al. Synthesis of carbon-coated LiMn0.8Fe0.2PO4 materials via an aqueous rheological phase-assisted solid-state method. J Solid State Electrochem 24, 821–828 (2020). https://doi.org/10.1007/s10008-020-04525-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04525-1

Keywords

Navigation