Skip to main content
Log in

Development and Characterization of Lignin Microparticles for Physical and Antioxidant Enhancement of Biodegradable Polymers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

As the largest aromatic polymer of natural origin, lignin arouses the interest of researchers and industries worldwide. Its three-dimensional polymeric aromatic structure, besides being complex, varies depending on its botanical origin and extraction process, which makes its use as a raw material difficult. Currently, the main destination for lignin is burning for energy production. This study presents the characterization of lignin and lignin microparticles after processing by ultrasonic irradiation. Analyzes were performed to verify the dimensional, morphological and antioxidant characteristics of the particles as well as changes in their structure after sonication. A sample of eucalyptus wood lignin isolated from kraft black liquor was used and the modifications were analyzed by X-ray diffraction analysis, zeta potential, FTIR spectroscopy, particle size, scanning electron microscopy, TGA thermogravimetric analysis, phenolic compounds total by Folin–Ciocalteau and antioxidant analysis by DPPH. The results demonstrate that there was no change in the chemical structure of lignin with the application of ultrasonic radiation, but the reduction in particle size was able to reduce zeta potential with a lower probability of agglomeration between them, and consequent greater stabilization in solution. Also, the ultrasound treatment was able to increase the thermal stability of the lignin microparticle with a decrease of the mass loss rate with the time. The reduction in particle size was also able to expose a larger number of phenolic compounds and thereby increase the total phenolic content and lignin antioxidant activity making the lignin microparticle a promising material to study and application on food-active biodegradable polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beisl S, Friedl A, Miltner A (2017) Lignin from micro-to nanosize: applications. Int J Mol Sci 18(11):2367

    Article  PubMed Central  Google Scholar 

  2. Spiridon I, Poni P, Ghica G, Alley V (2018) Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellul Chem Technol 52(7–8):543–550

    CAS  Google Scholar 

  3. Setälä H, Alakomi H-L, Paananen A, Szilvay GR, Kellock M, Lievonen M, Liljeström V, Hult E-L, Lintinen K, Österberg M, Kostiainen M (2019) Lignin nanoparticles modified with tall oil fatty acid for cellulose functionalization. Cellulose.https://doi.org/10.1007/s10570-019-02771-9

    Article  Google Scholar 

  4. Zhang N, Tao P, Lu Y, Nie S (2019) Effect of lignin on the thermal stability of cellulose nanofibrils produced from bagasse pulp. Cellulose 26(13–14):7823–7835

    Article  CAS  Google Scholar 

  5. Shukla A, Sharma V, Basak S, Ali SW (2019) Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric. Cellulose 26(13–14):8191–8208

    Article  CAS  Google Scholar 

  6. Chen R, Abdelwahab MA, Misra M, Mohanty AK (2014) Biobased ternary blends of lignin, poly(lactic acid), and poly(butylene adipate-co-terephthalate): the effect of lignin heterogeneity on blend morphology and compatibility. J Polym Environ 22(4):439–448. https://doi.org/10.1007/s10924-014-0704-5

    Article  CAS  Google Scholar 

  7. Sathawong S, Sridach W, Techato K-a (2018) Recovery of Kraft lignin from OPEFB and using for lignin–agarose hydrogel. J Polym Environ 26(8):3307–3315. https://doi.org/10.1007/s10924-018-1218-3

    Article  CAS  Google Scholar 

  8. Panzarasa G, Osypova A, Ribera J, Schwarze FWMR, Quasso F, Consolati G (2018) Hybrid adsorbent materials obtained by the combination of poly(ethylene-alt-maleic anhydride) with lignin and lignosulfonate. J Polym Environ 26(11):4293–4302. https://doi.org/10.1007/s10924-018-1299-z

    Article  CAS  Google Scholar 

  9. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905. https://doi.org/10.1104/pp.110.155119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramezani N, Sain M (2018) Thermal and physiochemical characterization of lignin extracted from wheat straw by organosolv process. J Polym Environ 26(7):3109–3116. https://doi.org/10.1007/s10924-018-1199-2

    Article  CAS  Google Scholar 

  11. Lu Q, Zhu M, Zu Y, Liu W, Yang L, Zhang Y, Zhao X, Zhang X, Zhang X, Li W (2012) Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin. Food Chem 135(1):63–67. https://doi.org/10.1016/j.foodchem.2012.04.070

    Article  CAS  Google Scholar 

  12. Sipponen MH, Lange H, Crestini C, Henn A, Österberg M (2019) Lignin for nano- and microscaled carrier systems: applications, trends, and challenges. ChemSusChem 12(10):2039–2054. https://doi.org/10.1002/cssc.201900480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang W, Fortunati E, Gao D, Balestra GM, Giovanale G, He X, Torre L, Kenny JM, Puglia D (2018) Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustain Chem Eng 6(3):3502–3514. https://doi.org/10.1021/acssuschemeng.7b03782

    Article  CAS  Google Scholar 

  14. de Castro e Silva P, de Oliveira ACS, Pereira LAS, Valquíria M, Carvalho GR, Miranda KWE, Marconcini JM, Oliveira JE. Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polym Compos. https://doi.org/10.1002/pc.25416

    Article  Google Scholar 

  15. Carvalho R, Oliveira A, Santos T, Dias M, Yoshida M, Borges S (2019) WPI and cellulose nanofibres bio-nanocomposites: effect of thyme essential oil on the morphological, mechanical, barrier and optical properties. J Polym Environ.https://doi.org/10.1007/s10924-019-01598-6

    Article  Google Scholar 

  16. Kovalcik A, Machovsky M, Kozakova Z, Koller M (2015) Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 94:25–34. https://doi.org/10.1016/j.reactfunctpolym.2015.07.001

    Article  CAS  Google Scholar 

  17. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12. https://doi.org/10.1016/j.eurpolymj.2016.04.003

    Article  CAS  Google Scholar 

  18. Yang W, Owczarek JS, Fortunati E, Kozanecki M, Mazzaglia A, Balestra GM, Kenny JM, Torre L, Puglia D (2016) Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crops Prod 94:800–811. https://doi.org/10.1016/j.indcrop.2016.09.061

    Article  CAS  Google Scholar 

  19. Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375. https://doi.org/10.1016/j.ultsonch.2014.08.021

    Article  CAS  PubMed  Google Scholar 

  20. Juttuporn W, Thiengkaew P, Rodklongtan A, Rodprapakorn M, Chitprasert P (2018) Ultrasound-assisted extraction of antioxidant and antibacterial phenolic compounds from steam-exploded sugarcane bagasse. Sugar Tech 20(5):599–608

    Article  CAS  Google Scholar 

  21. Goudarzi A, Lin L-T, Ko FK (2014) X-ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. J Nanotechnol Eng Med 5(2):021006

    Article  Google Scholar 

  22. Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13(2):97–105. https://doi.org/10.1007/s10924-005-2941-0

    Article  CAS  Google Scholar 

  23. Liu Z-H, Hao N, Shinde S, Pu Y, Kang X, Ragauskas AJ, Yuan JS (2019) Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chem 21(2):245–260. https://doi.org/10.1039/C8GC03290D

    Article  CAS  Google Scholar 

  24. Mattinen M-L, Valle-Delgado JJ, Leskinen T, Anttila T, Riviere G, Sipponen M, Paananen A, Lintinen K, Kostiainen M, Österberg M (2018) Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications. Enzyme Microb Technol 111:48–56. https://doi.org/10.1016/j.enzmictec.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  25. Shulga G, Livcha S, Neiberte B, Verovkins A, Vitolina S, Zhilinska E (2019) The effect of pH on the ability of different lignins to stabilize the oil-in-water emulsion. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, Bristol, p 012011

    Article  CAS  Google Scholar 

  26. Santos PSBD, Erdocia X, Gatto DA, Labidi J (2014) Characterisation of Kraft lignin separated by gradient acid precipitation. Ind Crops Prod 55:149–154. https://doi.org/10.1016/j.indcrop.2014.01.023

    Article  CAS  Google Scholar 

  27. García A, Erdocia X, González Alriols M, Labidi J (2012) Effect of ultrasound treatment on the physicochemical properties of alkaline lignin. Chem Eng Process 62:150–158. https://doi.org/10.1016/j.cep.2012.07.011

    Article  CAS  Google Scholar 

  28. García A, Alriols MG, Llano-Ponte R, Labidi J (2011) Ultrasound-assisted fractionation of the lignocellulosic material. Biores Technol 102(10):6326–6330. https://doi.org/10.1016/j.biortech.2011.02.045

    Article  CAS  Google Scholar 

  29. Meng L-Y, Ma M-G, Ji X-X (2019) Preparation of lignin-based carbon materials and its application as a sorbent. Materials 12(7):1111

    Article  CAS  PubMed Central  Google Scholar 

  30. Yuan T-Q, Sun S, Xu F, Sun R (2011) Isolation and physico-chemical characterization of lignins from ultrasound irradiated fast-growing poplar wood. BioResources 6(1):414–433

    CAS  Google Scholar 

  31. Yang B, Zhao M, Shi J, Yang N, Jiang Y (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem 106(2):685–690. https://doi.org/10.1016/j.foodchem.2007.06.031

    Article  CAS  Google Scholar 

  32. García A, González Alriols M, Labidi J (2012) Evaluation of the effect of ultrasound on organosolv black liquor from olive tree pruning residues. Biores Technol 108:155–161. https://doi.org/10.1016/j.biortech.2012.01.010

    Article  CAS  Google Scholar 

  33. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank FAPEMIG (Research Support Foundation of the State of Minas Gerais), CNPq (National Council for Scientific and Technological Development) and CAPES (Coordination of Improvement of Higher Level Personnel) for financial support and scholarships. Authors would like to thank Laboratory of Electron Microscopy and Analysis of Ultrastructural (http://www.prp.ufla.br/labs/microscopiaeletronica/), of Federal University of Lavras (UFLA) for supplying equipment and technical support for experiments involving electron microscopy. Authors would like to thank Central of Analysis and Chemical Prospecting of UFLA for supplying equipment and technical support for experiments involving FTIR and TGA analyzes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Salgado de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomide, R.A.C., de Oliveira, A.C.S., Rodrigues, D.A.C. et al. Development and Characterization of Lignin Microparticles for Physical and Antioxidant Enhancement of Biodegradable Polymers. J Polym Environ 28, 1326–1334 (2020). https://doi.org/10.1007/s10924-020-01685-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01685-z

Keywords

Navigation