Skip to main content
Log in

Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the industrial use of ZnO quantum dots (QDs) and nanoparticles (NPs) has risen and there is a high chance of these nanoparticles affecting human health. In this study, different sizes of ZnO-NPs (6–100 nm) were prepared and characterized. The generation of reactive oxygen species (ROS) and its involvement in apoptosis when HepG2 cells were exposed to QDs (6 nm) and NPs of different sizes (15–20, 50, and 100 nm) was also investigated. At a concentration of 25–200 μg/mL, NPs induced dose-dependent cytotoxicity in HepG2 cells. The engineered NPs increased oxidative stress in a dose- and size-dependent manner, as seen by an increase in ROS production, lipid peroxidation, and glutathione reduction. Furthermore, cell-cycle analysis of HepG2 cells treated with different sizes of NPs showed an increase in the apoptotic peak after a 24-h exposure period. Quantitative real-time PCR data showed that the mRNA levels of apoptotic marker genes such as p53, bax, and caspase-3 were upregulated, whereas bcl-2, an anti-apoptotic gene, was downregulated; therefore, apoptosis was mediated through the p53, bax, caspase-3, and bcl-2 pathways, suggesting a possible mechanism by which QDs and NPs of ZnO mediate their toxicity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen RQ, Zou CW, Yan XD, Gao W (2011) Zinc oxide nanostructures and porous films produced by oxidation of zinc precursors in wet-oxygen atmosphere. Prog Nat Sci Mater Int 21:81–96

    Google Scholar 

  2. Ramimoghadam D, Hussein MZB, Taufiq-Yap YH (2013) Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chem Central J 7:71

    Google Scholar 

  3. Polarz S, Orlov AV, Schüth F, Lu AH (2007) Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls. Chem Eur J 13:592–597

    CAS  PubMed  Google Scholar 

  4. Wahab R, Ansari SG, Kim YS, Seo HK, Shin HS (2007) Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl Surf Sci 253:7622–7626

    CAS  Google Scholar 

  5. Wahab R, Ansari SG, Kim YS, Dar MA, Shin HS (2008) Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J Alloy Compound 461:66–71

    CAS  Google Scholar 

  6. Wahab R, Khan F, Yang YB, Hwang IH, Shin HS, Ahmad J, Dwivedi S, Khan ST, Siddiqui MA, Saquib Q, Musarrat J, Al-Khedhairy AA, Mishra YK, Ali BA (2016) Zinc oxide quantum dots: multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes. RSC Adv 6:26111–26120

    CAS  Google Scholar 

  7. Ahmad J, Wahab R, Siddiqui MA, Musarrat J, Al-Khedhairy AA (2015) Zinc oxide quantum dots: a potential candidate to detain liver cancer cells. Bioproc Biosyst Eng 38:155–163

    CAS  Google Scholar 

  8. Neves MC, Trindade T, Timmons AMB, Jesus JDPD (2001) Synthetic hollow zinc oxide microparticles. Mater Res Bull 36:1099–1108

    CAS  Google Scholar 

  9. O'Brien S, Nolan MG, Çopuroglu M, Hamilton JA, Povey I, Pereira L, Martins R, Fortunato E, Pemble M (2010) Zinc oxide thin films: Characterization and potential applications. Thin Solid Films 518:4515–4519

    CAS  Google Scholar 

  10. Sathiya SM, Okram GS, Dhivya SM, Manivannan G, Rajan MAJ (2016) Interaction of chitosan/zinc oxide nanocomposites and their antibacterial activities with Escherichia coli. Mater Today 3:3855–3860

    Google Scholar 

  11. Hahm JI (2016) Fundamental properties of one-dimensional zinc oxide nanomaterials and implementations in various detection modes of enhanced biosensing. Annu Rev Phys Chem 67:691–717

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Barankin MD, Gonzalez IIE, Ladwig AM, Hicks RF (2007) Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Sol Energ Mater Sol Cells 91:924–930

    CAS  Google Scholar 

  13. Filpo GD, Pantuso E, Armentano K, Formoso P, Profio GD, Poerio T, Fontananova E, Meringolo C, Mashin AI, Nicoletta FP (2018) Chemical vapor deposition of photo catalyst nanoparticles on PVDF membranes for advanced oxidation processes. Membranes 8:35

    PubMed Central  Google Scholar 

  14. Fouad OA, Ismail AA, Zaki ZI, Mohamed RM (2006) Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity. Appl Catal B 62:144–149

    CAS  Google Scholar 

  15. Nian Q, Look D, Leedy K, Cheng GJ (2018) Optoelectronic performance enhance- ment in pulsed laser deposited gallium-doped zinc oxide (GZO) films after UV laser crystallization. Appl Phys A Mater Sci Process 2018:124. https://doi.org/10.1007/s00339-018-2032-4

    Article  CAS  Google Scholar 

  16. Holmes J, Johnson K, Zhang B, Katz HE, Matthews JS (2012) Metal organic chemical vapor deposition of ZnO from β-ketoiminates. Appl Organomet Chem 26:267–272

    CAS  Google Scholar 

  17. Lee S, Umar A, Kim SH, Reddy NK, Hahn YB (2007) Growth of ZnO nanoneedles on silicon substrate by cyclic feeding chemical vapor deposition: Structural and optical properties. Korean J Chem Eng 24:1084–1088

    CAS  Google Scholar 

  18. Singh T, Pandya DK, Singh R (2011) Template assisted growth of zinc oxide based nanowires by electrochemical deposition. J Nano Electron Phys 3:146–150

    Google Scholar 

  19. Wahab R, Khan ST, Ahmad J, Musarrat J, Al-Khedhairy AA (2017) Functionalization of anti-Brucella antibody on ZnO-NPs and their deposition on aluminum sheet towards developing a sensor for the detection of Brucella. Vacuum 146:592–598

    CAS  Google Scholar 

  20. Wahab R, Ansari SG, Kim YS, Dhage MS, Seo HK, Song MW, Shin HS (2009) Effect of annealing on the conversion of ZnS to ZnO nanoparticles synthesized by the sol-gel method using zinc acetate and thiourea. Met Mater Int 15:453–458

    CAS  Google Scholar 

  21. Wahab R, Ansari SG, Seo HK, Kim YS, Suh EK, Shin HS (2009) Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process. Solid State Sci 11(2):439–443

    CAS  Google Scholar 

  22. Dev A, Panda SK, Kar S, Chakrabarti S, Chaudhuri S (2006) Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol−gel-derived ZnO thin films. J Phys Chem B 110:14266–14272

    CAS  PubMed  Google Scholar 

  23. Zhou Q, Xie B, Jin L, Chen W, Li J (2016) Hydrothermal synthesis and respon- sive characteristics of hierarchical zinc oxide nanoflowers to sulfur dioxide. J Nanotech. https://doi.org/10.1155/2016/6742104

    Article  Google Scholar 

  24. Segovia M, Sotomayor C, Gonzalez G, Benavente E (2012) Zinc oxide nano structures by solvothermal synthesis. Mol Cryst Liq Cryst 555:40–50

    CAS  Google Scholar 

  25. Wahab R, Hwang IH, Kim YS, Musarrat J, Siddiqui MA, Seo HK, Tripathy SK, Shin HS (2011) Non-hydrolytic synthesis and photo-catalytic studies of ZnO nanoparticles. Chem Eng J 175:450–457

    CAS  Google Scholar 

  26. Johnson JC, Yan H, Schaller RD, Petersen PB, Yang P, Saykally RJ (2002) Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett 2:279–283

    CAS  Google Scholar 

  27. Tyona MD, Osuji RU, Ezema FI (2013) A review of zinc oxide photoanode films for dye sensitized solar cells based on zinc oxide nanostructures. Adv Nano Res 1:43–58

    Google Scholar 

  28. Wahab R, Khan F, Ahmad N, Shin HS, Musarrat J, Al-Khedhairy AA (2013) Hydrogen adsorption properties of nano and microstructures of ZnO. J Nanomater. https://doi.org/10.1155/2013/542753

    Article  Google Scholar 

  29. Wahab R, Kaushik NK, Verma AK, Mishra A, Hwang IH, Yang YB, Shin HS, Kim YS (2011) Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. J Biol Inorg Chem 16:431–442

    CAS  PubMed  Google Scholar 

  30. Wahab R, Khan F, Lutfullah SRB, Kaushik NK, Ahmad J, Siddiqui MA, Saquib Q, Ali BA, Khan ST, Musarrat J, Al-Khedhairy AA (2015) Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis. Phys E (Amsterd Neth) 69:101–108

    CAS  Google Scholar 

  31. Khan M, Naqvi AH, Ahmad M (2015) Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol Rep 2:765–774

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goh EG, Xu X, McCormick PG (2014) Effect of particle size on the UV absorbance of zinc oxide nanoparticles. SCR Mater 78–79:49–52

    Google Scholar 

  33. Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction. Nanoscale Res Lett 4:1409–1420

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Najim N, Rusdi R, Hamzah AS, Shaameri Z, Zain MM, Kamarulzaman N (2014) Effects of the absorption behaviour of ZnO nanoparticles on cytotoxicity measurements. J Nanomater. https://doi.org/10.1155/2014/694737

    Article  Google Scholar 

  35. Sahu D, Kannan GM, Tailang M, Vijayaraghavan R (2016) In vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. J Nanosci. https://doi.org/10.1155/2016/4023852

    Article  Google Scholar 

  36. Li H, Yanan Z, Yang L, Linhua H, Huarong G (2017) Comparison of the in vitro and in vivo toxic effects of three sizes of zinc oxide (ZnO) particles using flounder gill (FG) cells and zebrafish embryos. J Ocean Univ China 16:93–106

    Google Scholar 

  37. Liu J, Kang Y, Yin S, Song B, Wei L, Chen L, Shao L (2017) Zinc oxide nano particles induce toxic responses in human neuroblastoma SHSY5Y cells in a size dependent manner. Inter J Nanomed 12:8085–8099

    CAS  Google Scholar 

  38. Sahu D, Kannan GM, Vijayaraghavan R (2014) Size dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. J Toxicol Environ Health A 77:177–191

    CAS  PubMed  Google Scholar 

  39. Wahab R, Mishra A, Yun SI, Kim YS, Shin HS (2010) Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol 87:1917–1925

    CAS  PubMed  Google Scholar 

  40. Wahab R, Kim YS, Hwang IH, Shin HS (2009) A non-aqueous synthesis, characterization of zinc oxide nanoparticles and their interaction with DNA. Synth Metals 159:2443–2452

    CAS  Google Scholar 

  41. Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin HS (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42:1640–1648

    CAS  Google Scholar 

  42. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  43. Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124

    CAS  PubMed  Google Scholar 

  44. Siddiqui MA, Kashyap MP, Kumar V, Al-Khedhairy AA, Musarrat J, Pant AB (2010) Protective potential of trans-resveratrol against 4- hydroxy nonenal induced damage in PC12 cells. Toxicol In Vitro 24:1592–1598

    CAS  PubMed  Google Scholar 

  45. Wróblewski F, Ladue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213

    PubMed  Google Scholar 

  46. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    CAS  PubMed  Google Scholar 

  47. Zhang R, Pan X, Huang Z, Weber GF, Zhang G (2011) Osteopontin enhances the expression and activity of MMP-2 via the SDF-1/CXCR4 axis in hepatocellular carcinoma cell lines. PLoS One. https://doi.org/10.1371/journal.pone.0023831

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  49. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  50. Saquib Q, Al-Khedhairy AA, Ahmad J, Siddiqui MA, Dwivedi S, Khan ST, Musarrat J (2013) Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol 273:289–297

    CAS  PubMed  Google Scholar 

  51. Shen C, James SA, deJonge MD, Turney TW, Wright PF, Feltis BN (2013) Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle exposed human immune cells. Toxicol Sci 136:120–130

    CAS  PubMed  Google Scholar 

  52. Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L'Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10

    PubMed  PubMed Central  Google Scholar 

  53. Khanna P, Ong C, Bay BH, Baeg GH (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel) 5:1163–1180

    CAS  Google Scholar 

  54. Li N, Sioutas C, Cho A, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Env Health Perspect 111:455–460

    CAS  Google Scholar 

  55. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    CAS  PubMed  Google Scholar 

  56. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    CAS  PubMed  Google Scholar 

  57. Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    CAS  PubMed  Google Scholar 

  58. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    CAS  PubMed  Google Scholar 

  59. Ravi M, De SL, Azharuddin S, Pau SFD (2010) The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutr Diet Suppl 2010:273–283

    Google Scholar 

  60. Ferreira CG, Epping M, Kruyt FA, Giaccone G (2002) Apoptosis: target of cancer therapy. Clin Cancer Res 8:2024–2034

    CAS  PubMed  Google Scholar 

  61. Konopa J (1988) G2 block induced by DNA crosslinking agents and its possible consequence. Biochem Pharmacol 37:2303–2309

    CAS  PubMed  Google Scholar 

  62. Tsao YP, Arpa PD, Liu LF (1992) The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res 52:1823–1829

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javed Ahmad or Rizwan Wahab.

Ethics declarations

Conflicts of interest

The authors declared that there is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Wahab, R., Siddiqui, M.A. et al. Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. J Biol Inorg Chem 25, 325–338 (2020). https://doi.org/10.1007/s00775-020-01764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01764-5

Keywords

Navigation