Skip to main content
Log in

Sunflower oil-based MCC surface modification to achieve improved thermomechanical properties of a polypropylene composite

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A biobased approach was taken to endow microcrystalline cellulose (MCC) with surface hydrophobicity using sunflower oil biodiesel (sunflower oil fatty acid ethyl esters, SFEEs) and thereby improve the compatibility with a hydrophobic polypropylene (PP) matrix. This environmentally friendly green chemistry approach introduces a monomolecular long-chain fatty acid layer on the MCC surface, making the surface hydrophobic. However, as per the X-ray Diffraction results, this surface modification process had no effect on the crystal structure of MCC. The inclusion of surface-modified MCC in the PP matrix significantly improves the thermomechanical properties of the composite. The tensile, impact and hardness properties of the surface-treated fiber reinforcements were improved by 11%, 71%, and 23%, respectively, compared to those of nonreinforced PP. The thermal stability also was improved considerably by the incorporation of modified MCC into PP.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Modified and unmodified composites were prepared as per Table 3 (see MCC–PP composite preparation)

Fig. 16

Modified and unmodified composites were prepared as per Table 3 (see MCC-PP composite preparation)

Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adebajo MO, Frost RL (2004) Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation. Spectrochim Acta Part A Mol Biomol Spectrosc 60:2315–2321. https://doi.org/10.1016/j.saa.2003.12.005

    Article  CAS  Google Scholar 

  • Akhtar MN, Sulong AB, Radzi MKF, Ismail NF, Raza MR, Muhamad N, Khan MA (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat Sci: Mater Int 26:657–664. https://doi.org/10.1016/j.pnsc.2016.12.004

    Article  CAS  Google Scholar 

  • Ashori A, Nourbakhsh A (2010) Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites. Compos B Eng 41:578–581. https://doi.org/10.1016/j.compositesb.2010.05.004

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DI (1984) Native cellulose: a composite of two distinct-crystalline forms. Science 223:283–284

    Article  CAS  Google Scholar 

  • Avila Ramirez JA, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohyd Polym 114:416–423. https://doi.org/10.1016/j.carbpol.2014.08.020

    Article  CAS  Google Scholar 

  • Avila Ramirez JA, Gomez Hoyos C, Arroyo S, Cerrutti P, Foresti ML (2016) Acetylation of bacterial cellulose catalyzed by citric acid: use of reaction conditions for tailoring the esterification extent. Carbohyd Polym 153:686–695. https://doi.org/10.1016/j.carbpol.2016.08.009

    Article  CAS  Google Scholar 

  • Avila Ramirez JA, Fortunati E, Kenny JM, Torre L, Foresti ML (2017) Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohyd Polym 157:1358–1364. https://doi.org/10.1016/j.carbpol.2016.11.008

    Article  CAS  Google Scholar 

  • Bader MG, Collins JF (1983) The effect of fibre-interface and processing variables on the mechanical properties of glass-fibre filled nylon 6 fibre. Sci Technol 18(1983):217–231

    Google Scholar 

  • Begum K, Islam MA (2013) Natural fiber as a substitute to synthetic fiber in polymer composites: a review research. J Eng Sci 2(3):46–53

    Google Scholar 

  • Belgacem MN, Bataille P, Sapieha S (1994) Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J Appl Polym Sci 53(53):379–385

    Article  CAS  Google Scholar 

  • Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93:952–967. https://doi.org/10.1016/j.polymdegradstab.2008.01.033

    Article  CAS  Google Scholar 

  • Bourbigot S, Chlebicki S, Mamleev V (2002) Thermal degradation of cotton under linear heating. Polym Degrad Stab 78(78):57–62

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(94):154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  • Canetti M, Bertini F, De Chirico A, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91:494–498. https://doi.org/10.1016/j.polymdegradstab.2005.01.052

    Article  CAS  Google Scholar 

  • Caraschi JC, Leão AL (2002) Woodflour as reinforcement of polypropylene. Mater Res 5(4–5):405–409

    Article  CAS  Google Scholar 

  • Dankovich TA, Hsieh YL (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14:469–480. https://doi.org/10.1007/s10570-007-9132-1

    Article  CAS  Google Scholar 

  • Dinh Vu N, Thi Tran H, Duy Nguyen T (2018) Characterization of polypropylene green composites reinforced by cellulose fibers extracted from rice straw. Int J Polym Sci 2018:1–10. https://doi.org/10.1155/2018/1813847

    Article  CAS  Google Scholar 

  • Dong X, Dong Y, Jiang M, Wang L, Tong J, Zhou J (2013) Modification of microcrystalline cellulose by using soybean oil for surface hydrophobization. Ind Crops Prod 46:301–303. https://doi.org/10.1016/j.indcrop.2013.02.010

    Article  CAS  Google Scholar 

  • Dufresne A (2017) Nanocellulose, from nature to high performance tailored materials, 2nd edn. Walter de Gruyter GmbH & Co KG, Berlin. https://doi.org/10.1515/9783110480412

    Book  Google Scholar 

  • Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos A Appl Sci Manuf 35:1267–1276. https://doi.org/10.1016/j.compositesa.2004.04.004

    Article  CAS  Google Scholar 

  • Ferre EM (2014) Chemical modification of cellulose for electrospinning applications. Master Thesis. Master, Tallinn University of Technology

  • Frisoni G, Baiardo M, Scandola M (2001) Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromolecules 2:476–482

    Article  CAS  Google Scholar 

  • García Marín MJ, García FP (2012) Obtaining and characterization of biodiesel from castor oil (Ricinus communis) and sunflower (Helianthus annuus) grown in tabasco, Mexico. Int J Appl Sci Technol 2(9):58–74

    Google Scholar 

  • Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219. https://doi.org/10.1002/app.31746

    Article  CAS  Google Scholar 

  • Hao Y, Peng J, Li J, Zhai M, Wei G (2009) An ionic liquid as reaction media for radiation-induced grafting of thermosensitive poly (N-isopropylacrylamide) onto microcrystalline cellulose. Carbohyd Polym 77:779–784. https://doi.org/10.1016/j.carbpol.2009.02.025

    Article  CAS  Google Scholar 

  • Hassan N, Abbas D (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohyd Polym 79(79):731–737. https://doi.org/10.1016/j.carbpol.2009.09.033

    Article  CAS  Google Scholar 

  • He B, Gerpen JHV (2012) Application of ultrasonication in transesterification processes for biodiesel production. Biofuels 3(4):479–488

    Article  CAS  Google Scholar 

  • Ibiari NN, Abo El-Enin SA, Attia NK, El-Diwani G (2010) Ultrasonic comparative assessment for biodiesel production from rapeseed. J Am Sci 6(12):937–943

    Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. https://doi.org/10.1002/pc.20461

    Article  CAS  Google Scholar 

  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  CAS  Google Scholar 

  • Kahavita KDHN, Samarasekara AMPB, Amarasinghe DAS, Karunanayake L (2019) Influence of surface modification of cellulose nanofibers (CNF) as the reinforcement of polypropylene based composite. Paper presented at the Moratuwa Engineering Research Conference (MERCon) 2019

  • Kahawita KDHN, Samarasekara AMPB (2016) Extraction and characterization of cellulosic fibers from Sawmill Waste. Paper presented at the Moratuwa Engineering Research Conference (MERCon)

  • Kahawita KDHN, Samarasekara AMPB, Amarasinghe DAS, Karunanayake L (2018) Fabrication of nanofibrillated cellulose (NFC) based composite materials for engineering applications. In: Proceedings of international forestry and environment symposium

  • Kalsum U, Mahfud M, Roesyadi A (2017) Ultrasonic assisted biodiesel production of microalgae by direct transesterification. In: International conference on chemistry, chemical process and engineering (IC3PE) 2017, AIP conference proceedings. American Institute of Physics, pp 020088-020081–020088-020085. https://doi.org/10.1063/1.4978161

  • Karmarkar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos A Appl Sci Manuf 38:227–233. https://doi.org/10.1016/j.compositesa.2006.05.005

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002

    Article  PubMed  CAS  Google Scholar 

  • Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of biodiesels from various bio oils. Bioresour Technol 80:53–62

    Article  CAS  Google Scholar 

  • Lee SY, Kang IA, Doh GH, Kim WJ, Kim JS, Yoon HG, Wu QH (2008) Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. Express Polym Lett 2:78–87. https://doi.org/10.3144/expresspolymlett.2008.11

    Article  CAS  Google Scholar 

  • Lin Q, Zhou X, Dai G (2002) Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour-filled polypropylene composites. J Appl Polym Sci 85:2824–2832. https://doi.org/10.1002/app.10844

    Article  CAS  Google Scholar 

  • Liu W, Ming-en Fei M, Ban Y, Jia A, Qiu R (2017) Preparation and evaluation of green composites from microcrystalline cellulose and a soybean-oil derivative. Polymers 9:541. https://doi.org/10.3390/polym9100541

    Article  PubMed Central  CAS  Google Scholar 

  • Lu Y, Tekinalp H, Eberle CC, Peter W, Naskar AK, Ozcan S (2014) Nanocellulose in polymer composites and biomedical applications. J Tappi 13(6):47–54

    Article  CAS  Google Scholar 

  • Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym 93:628–634. https://doi.org/10.1016/j.carbpol.2013.01.035

    Article  CAS  Google Scholar 

  • Mubarak M, Shaija A, Suchithra TV (2016) Ultrasonication: an effective pre-treatment method for extracting lipid from Salvinia molesta for biodiesel production. Resour-Effic Technol 2:126–132. https://doi.org/10.1016/j.reffit.2016.07.005

    Article  Google Scholar 

  • Nanayakkara MPA, Pabasara WGA, Samarasekara AMPB, Amarasinghe DAS, Karunanayake L (2017a) Extraction and characterisation of cellulose materials from sri lankan agricultural waste. In: Proceedings of international forestry and environment symposium, p 47

  • Nanayakkara MPA, Pabasara WGA, Samarasekara AMPB, Amarasinghe DAS, Karunanayake L (2017b) Synthesis and characterization of cellulose from locally available rice straw. Paper presented at the Moratuwa Engineering Research Conference (MERCon)

  • Naureen R, Tariq M, Yusoff I, Chowdhury AJ, Ashraf MA (2015) Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis. Saudi J Biol Sci 22:332–339. https://doi.org/10.1016/j.sjbs.2014.11.017

    Article  PubMed  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206. https://doi.org/10.1002/cjce.20554

    Article  CAS  Google Scholar 

  • Phillips DL, Liu H, Pan D, Corke H (1999) General application of raman spectroscopy for the determination of level of acetylation in modified starches cereal. Chem J 76:439–443. https://doi.org/10.1094/cchem.1999.76.3.439

    Article  CAS  Google Scholar 

  • Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E (2006) Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos Sci Technol 66:2218–2230. https://doi.org/10.1016/j.compscitech.2005.12.006

    Article  CAS  Google Scholar 

  • Rabelo SN, Ferraz VP, Oliveira LS, Franca AS (2015) FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. Int J Environ Sci Dev 6:964–969. https://doi.org/10.7763/ijesd.2015.v6.730

    Article  CAS  Google Scholar 

  • Rahman MR, Huque MM, Islam MN, Hasan M (2008) Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Compos A Appl Sci Manuf 39:1739–1747. https://doi.org/10.1016/j.compositesa.2008.08.002

    Article  CAS  Google Scholar 

  • Rajapaksha LD, Saumyadi HAD, Samarasekara AMPB, Amarasinghe DAS, Karaunanayake L (2017) Development of cellulose based light weight polymer composites. Paper presented at the Moratuwa Engineering Research Conference (MERcon)

  • Rathnayake WSM, Karunanayake L, Amarasinghe DAS, Samarasekara AMPB (2019) Fabrication and characterization of polypropylene-microcrystalline cellulose based composites with enhanced compatibility. Paper presented at the Moratuwa Engineering Research Conference (MERCon) 2019, Moratuwa, Sri Lanka, Sri Lanka

  • Samarasekara AMPB, Kahavita KDHN, Amarasinghe DAS, Karunanayake L (2018a) Fabrication and characterization of nanofibrillated cellulose (NFC) reinforced polymer composite. Paper presented at the Moratuwa Engineering Research Conference (MERCon)

  • Samarasekara AMPB, Kumara SPDA, Madhusanka AJS, Amarasinghe DAS, Karunanayake L (2018b) Study of thermal and mechanical properties of microcrystalline cellulose and nanocrystalline cellulose based thermoplastic material. Paper presented at the Moratuwa Engineering Research Conference (MERCon)

  • Samarasekara AMPB, Nanayakkara MPA, Pabasara WGA, Amarasinghe DAS, Karunanayake L (2018c) Novel thermogravimetry based analytical method for cellulose yield prediction of Sri Lankan rice straw varieties. Paper presented at the Moratuwa Engineering Research Conference (MERCon)

  • Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken

    Google Scholar 

  • Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci: Nanosci Nanotechnol 7:035004. https://doi.org/10.1088/2043-6262/7/3/035004

    Article  CAS  Google Scholar 

  • Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos A Appl Sci Manuf 40:791–799. https://doi.org/10.1016/j.compositesa.2009.03.011

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated. Cellul Biomacromol 11:454–464

    Article  CAS  Google Scholar 

  • Umadaran S, Somasuntharam P, Samarasekara AMPB (2016) Preparation and characterization of cellulose and hemi-cellulose based degradable composite material using sugarcane waste. Paper presented at the Moratuwa Engineering Research Conference (MERCon)

  • VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17(17):1465–1472

    Article  CAS  Google Scholar 

  • Wei L, Agarwal UP, Hirth KC, Matuana LM, Sabo RC, Stark NM (2017) Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohyd Polym 169:108–116. https://doi.org/10.1016/j.carbpol.2017.04.008

    Article  CAS  Google Scholar 

  • Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77:45–55. https://doi.org/10.1016/j.compstruct.2005.06.005

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Department of Chemistry, University of Sri Jayewardenepura, and Department of Materials Science and Engineering, the University of Moratuwa, for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. S. Amarasinghe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47,845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnayake, W.S.M., Karunanayake, L., Samarasekara, A.M.P.B. et al. Sunflower oil-based MCC surface modification to achieve improved thermomechanical properties of a polypropylene composite. Cellulose 27, 4355–4371 (2020). https://doi.org/10.1007/s10570-020-03053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03053-5

Keywords

Navigation