Skip to main content
Log in

A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-ion batteries are approaching their theoretical limit and can no longer keep up with the increasing demands of human society. Lithium-sulfur batteries, with a high theoretical specific energy, are promising candidates for next generation energy storage. However, the use of Li metal in Li-S batteries compromises both safety and performance, enabling dendrite formation and causing fast capacity degradation. Previous studies have probed alternative battery systems to replace the metallic Li in Li-S system, such as a Si/Li2S couple, with limited success in performance. Recently, there is a focus on red P as a favorable anode material to host Li. Here, we establish a novel battery scheme by utilizing a P/C nanocomposite anode and pairing it with a Li2S coated carbon nanofiber cathode. We find that red P anode can be compatible in ether-based electrolyte systems and can be successfully coupled to a Li2S cathode. Our proof of concept full-cell displays remarkable specific capacity, rate and cycling performances. We expect our work will provide a useful alternative system and valuable insight in the quest for next generation energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater.2017, 16, 16–22.

    Article  Google Scholar 

  2. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater.2016, 1, 16013.

    Article  CAS  Google Scholar 

  3. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater.2015, 27, 1980–2006.

    Article  CAS  Google Scholar 

  4. Nazar, L. F.; Cuisinier, M.; Pang, Q. Lithium-sulfur batteries. MRS Bulletin2014, 39, 436–442.

    Article  CAS  Google Scholar 

  5. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev.2016, 45, 5605–5634.

    Article  CAS  Google Scholar 

  6. Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem.2010, 20, 9821–9826.

    Article  CAS  Google Scholar 

  7. Wu, D. S.; Shi, F. F.; Zhou, G. M.; Zu, C. X.; Liu, C.; Liu, K.; Liu, Y. Y.; Wang, J. Y.; Peng, Y. C.; Cui, Y. Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Mater.2018, 13, 241–246.

    Article  Google Scholar 

  8. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl Acad Sci USA2017, 114, 840–845.

    Article  CAS  Google Scholar 

  9. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev.2014, 114, 11751–11787.

    Article  CAS  Google Scholar 

  10. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev.2013, 42, 3018–3032.

    Article  CAS  Google Scholar 

  11. Su, D. W.; Zhou, D.; Wang, C. Y.; Wang, G. X. Toward high per formance lithium-sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater.2018, 28, 1800154.

    Article  Google Scholar 

  12. Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nano-structured current collectors in lithium-sulfur batteries. Nano Res.2017, 10, 4027–4054.

    Article  CAS  Google Scholar 

  13. Wang, H. S.; Lin, D. C.; Xie, J.; Liu, Y. Y.; Chen, H.; Li, Y. B.; Xu, J. W.; Zhou, G. M.; Zhang, Z. W.; Pei, A. et al. An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater.2019, 9, 1802720.

    Article  Google Scholar 

  14. Nishikawa, K.; Fukunaka, Y.; Sakka, T.; Ogata, Y. H.; Selman, J. R. Measurement of concentration profiles during electrodeposition of Li metal from LiPF6-PC electrolyte solution: The role of SEI dynamics. J. Electrochem. Soc.2007, 154, A943–A948.

    Article  CAS  Google Scholar 

  15. Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett.2010, 10, 1486–1491.

    Article  CAS  Google Scholar 

  16. Wang, Y. L.; Tian, L. Y.; Yao, Z. H.; Li, F.; Li, S.; Ye, S. H. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim. Acta2015, 163, 71–76.

    Article  CAS  Google Scholar 

  17. Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. J. Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim. Acta2004, 50, 247–254.

    Article  CAS  Google Scholar 

  18. Sun, L.; Zhang, Y.; Zhang, D. Y.; Liu, J. G; Zhang, Y. H. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res.2018, 11, 2733–2745.

    Article  CAS  Google Scholar 

  19. Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon2014, 78, 455–462.

    Article  CAS  Google Scholar 

  20. Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources2015, 289, 100–104.

    Article  CAS  Google Scholar 

  21. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun.2012, 48, 8931–8933.

    Article  CAS  Google Scholar 

  22. Li, J. Y.; Wang, L.; Ren, Y. M.; Zhang, Y.; Wang, Y. F.; Hu, A. G.; He, X. M. Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries. Ionics2016, 22, 167–172.

    Article  CAS  Google Scholar 

  23. Wang, L. Y.; Guo, H. L.; Wang, W.; Teng, K. Y.; Xu, Z. W.; Chen, C.; Li, C. Y.; Yang, C. Y.; Hu, C. S. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta2016, 211, 499–506.

    Article  CAS  Google Scholar 

  24. Qin, X. Y.; Yan, B. Y.; Yu, J.; Jin, J.; Tao, Y.; Mu, C.; Wang, S. C.; Xue, H. G.; Pang, H. Phosphorus-based materials for high-performance rechargeable batteries. Inorg. Chem. Front.2017, 4, 1424–1444.

    Article  CAS  Google Scholar 

  25. Sun, Y. M.; Wang, L.; Li, Y. B.; Li, Y. Z.; Lee, H. R.; Pei, A.; He, X. M.; Cui, Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule2019, 3, 1080–1093.

    Article  CAS  Google Scholar 

  26. Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem.2012, 124, 9168–9171.

    Article  Google Scholar 

  27. Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater.2016, 6, 1501355.

    Article  Google Scholar 

  28. Zhou, G. M.; Sun, J.; Jin, Y.; Chen, W.; Zu, C. X.; Zhang, R. F.; Qiu, Y. C.; Zhao, J.; Zhuo, D.; Liu, Y. Y. et al. Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. Adv. Mater.2017, 29, 1603366.

    Article  Google Scholar 

Download references

Acknowledgements

Y. C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under the Battery Materials Research program and the Battery 500 Consortium program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongming Sun or Yi Cui.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D.S., Zhou, G., Mao, E. et al. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Res. 13, 1383–1388 (2020). https://doi.org/10.1007/s12274-020-2645-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2645-8

Keywords

Navigation